Détail de l'auteur
Auteur D.M. Rocke |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of contamination in salt marsh plant using hyperspectral reflectance / M.D. Wilson in IEEE Transactions on geoscience and remote sensing, vol 42 n° 5 (May 2004)
[article]
Titre : Classification of contamination in salt marsh plant using hyperspectral reflectance Type de document : Article/Communication Auteurs : M.D. Wilson, Auteur ; S.L. Ustin, Auteur ; D.M. Rocke, Auteur Année de publication : 2004 Article en page(s) : pp 1088 - 1095 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture
[Termes IGN] analyse comparative
[Termes IGN] contamination
[Termes IGN] image hyperspectrale
[Termes IGN] marais salé
[Termes IGN] pétrole
[Termes IGN] pollution des sols
[Termes IGN] réflectance spectrale
[Termes IGN] réflectance végétaleRésumé : (Auteur) In this paper, we compare the classification effectiveness of two relatively new techniques on data consisting of leaf-level reflectance from five species of salt marsh and two species of crop plants (in four experiments) that have been exposed to varying levels of different heavy metal or petroleum toxicity, with a control treatment for each experiment. If these methodologies work well on leaf-level data, then there is hope that they will also work well on data from air- and spaceborne platforms. The classification methods compared were support vector classification (SVC) of exposed and nonexposed plants based on the spectral reflectance data, and partial least squares compression of the spectral reflectance data followed by classification using logistic discrimination (PLSALD). The statistic we used to compare the effectiveness of the methodologies was the leave-one-out cross-validation estimate of the prediction error. Our results suggest that both techniques perform reasonably well, but that SVC was superior to PLS/LD for use on hyperspectral data and it is worth exploring as a technique for classifying heavy-metal or petroleum exposed plants for the more complicated data from airand spaceborne sensors. Numéro de notice : A2004-195 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2003.823278 En ligne : https://doi.org/10.1109/TGRS.2003.823278 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26722
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 5 (May 2004) . - pp 1088 - 1095[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04051 RAB Revue Centre de documentation En réserve L003 Disponible