Détail de l'auteur
Auteur R. Lawrence |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of remotely sensed imagery stochastic gradient boosting as a refinement of classification tree analysis / R. Lawrence in Remote sensing of environment, vol 90 n° 3 (15/04/2004)
[article]
Titre : Classification of remotely sensed imagery stochastic gradient boosting as a refinement of classification tree analysis Type de document : Article/Communication Auteurs : R. Lawrence, Auteur ; A. Bunn, Auteur ; et al., Auteur Année de publication : 2004 Article en page(s) : pp 331 - 336 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] image Ikonos
[Termes IGN] image Landsat-ETM+
[Termes IGN] image PROBE
[Termes IGN] précision de la classification
[Termes IGN] sylvicultureRésumé : (Auteur) Classification tree analysis (CTA) provides an effective suite of algorithms for classifying remotely sensed data, but it has the limitations of (1) not searching for optimal tree structures and (2) being adversely affected by outliers, inaccurate training data, and unbalanced data sets. Stochastic gradient boosting (SGB) is a refinement of standard CTA that attempts to minimize these limitations by (1) using classification errors to iteratively refine the trees using a random sample of the training data and (2) combining the multiple trees iteratively developed to classify the data. We compared traditional CTA results to SGB for three remote sensing based data sets, an IKONOS image from the Sierra Nevada Mountains of California, a Probe-1 hyperspectral image from the Virginia City mining district of Montana, and a series of Landsat ETM+ images from the Greater Yellowstone Ecosystem (GYE). SGB improved the overall accuracy of the IKONOS classification from 84% to 95% and the Probe-1 classification from 83% to 93%. The worst performing classes using CTA exhibited the largest increases in class accuracy using SGB. A slight decrease in overall classification accuracy resulted from the SGB analysis of the Landsat data. Numéro de notice : A2004-200 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2004.01.007 En ligne : https://doi.org/10.1016/j.rse.2004.01.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26727
in Remote sensing of environment > vol 90 n° 3 (15/04/2004) . - pp 331 - 336[article]