Détail de l'auteur
Auteur Tinghua Ai |
Documents disponibles écrits par cet auteur (15)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A hexagon-based method for polygon generalization using morphological operators / Lu Wang in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A hexagon-based method for polygon generalization using morphological operators Type de document : Article/Communication Auteurs : Lu Wang, Auteur ; Tinghua Ai, Auteur ; Dirk Burghardt, Auteur ; Yilang Shen, Auteur ; Min Yang, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données maillées
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] morphologie mathématique
[Termes IGN] polygone
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Numerous methods based on square rasters have been proposed for polygon generalization. However, these methods ignore the inconsistent distance measurement among neighborhoods of squares, which may result in an imbalanced generalization in different directions. As an alternative raster, a hexagon has consistent connectivity and isotropic neighborhoods. This study proposed a hexagon-based method for polygon generalization using morphological operators. First, we defined three generalization operators: aggregation, elimination, and line simplification, based on hexagonal morphological operations. We then used corrective operations with selection, skeleton, and exaggeration to detect, classify, and correct the unreasonably reduced narrow parts of the polygons. To assess the effectiveness of the proposed method, we conducted experiments comparing the hexagonal raster to square raster and vector data. Unlike vector-based methods in which various algorithms simplified either areal objects or exterior boundaries, the hexagon-based method performed both simplifications simultaneously. Compared to the square-based method, the results of the hexagon-based method were more balanced in all neighborhood directions, matched better with the original polygons, and had smoother simplified boundaries. Moreover, it performed with shorter running time than the square-based method, where the minimal time difference was less than 1 min, and the maximal time difference reached more than 50 mins. Numéro de notice : A2023-071 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2108036 Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2108036 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101387
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023)[article]Raster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Raster-based method for building selection in the multi-scale representation of two-dimensional maps Type de document : Article/Communication Auteurs : Yilang Shen, Auteur ; Tinghua Ai, Auteur ; Rong Zhao, Auteur Année de publication : 2022 Article en page(s) : pp 6494 - 6518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] densité du bâti
[Termes IGN] distribution spatiale
[Termes IGN] données matricielles
[Termes IGN] représentation cartographique 2D
[Termes IGN] représentation multiple
[Termes IGN] segmentation
[Termes IGN] superpixel
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) In the multi-scale representation of maps, a selection operation is usually applied to reduce the number of map elements and improve legibility while maintaining the original distribution characteristics. During the past few decades, many methods for vector building selection have been developed; however, pixel-based methods are relatively lacking. In this paper, a multiple-strategy method for raster building selection is proposed. In this method, to preserve the distribution range, a new homogeneous linear spectral clustering (HLSC) superpixel segmentation method is developed for the relatively homogeneous spatial division of building groups. Then, to preserve the relative distribution density, multi-level spatial division is performed according to the local number of buildings. Finally, to preserve the local geometric, attributive and geographical characteristics, four selection strategies, namely, the minimum centroid distance, minimum boundary distance, maximum area and considering geographical element strategies, are designed to generate selection results. To evaluate the proposed method, dispersed buildings in a suburban area are utilized to perform selection tasks. The experimental results indicate that the proposed method can effectively select dispersed irregular buildings at different levels of detail while maintaining the original distribution range and relative distribution density. In addition, the use of multiple selection strategies considering various geometric, attributive and geographical characteristics provides multiple options for cartography. Numéro de notice : A2022-727 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943007 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101673
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6494 - 6518[article]Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
[article]
Titre : Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps Type de document : Article/Communication Auteurs : Xiongfeng Yan, Auteur ; Tinghua Ai, Auteur ; Min Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 490 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] codage
[Termes IGN] données vectorielles
[Termes IGN] graphe
[Termes IGN] mesure géométrique
[Termes IGN] modélisation du bâti
[Termes IGN] représentation cognitive
[Termes IGN] représentation spatialeRésumé : (auteur) The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching. Numéro de notice : A2021-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768260 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768260 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97100
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 490 - 512[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021031 SL Revue Centre de documentation Revues en salle Disponible An integrated method for DEM simplification with terrain structural features and smooth morphology preserved / Wenhao Yu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : An integrated method for DEM simplification with terrain structural features and smooth morphology preserved Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Yifan Zhang, Auteur ; Tinghua Ai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 273 - 295 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse structurelle
[Termes IGN] arête
[Termes IGN] carte géomorphologique
[Termes IGN] filtrage statistique
[Termes IGN] ligne caractéristique
[Termes IGN] limite de terrain
[Termes IGN] modèle numérique de surface
[Termes IGN] visualisation multiéchelleRésumé : (auteur) As a key focus of cartography and terrain analysis, the simplification of a digital elevation model (DEM) is used to preserve the pattern features of the terrain surface while suppressing its details over multiple scales. Statistical filtering and structural analysis methods are commonly used for this process. The structural analysis method performs well in identifying terrain structural edges, while it tends to discard the smooth morphology of a terrain surface. In addition, the filter that aims to reduce noise on a surface may over-smooth the terrain structural edges. Therefore, to preserve both the terrain structural edges and smooth morphology, we propose to combine the techniques of statistical filtering and structural analysis. Specifically, all the critical elevation points and structural edges are first detected from the DEM surface by using the structural analysis method. Then, the iterative guided normal filter is used to smooth the generalized DEM with the guidance of the structure of the original surface. After this process, the terrain structure is retained in the smooth surface of the DEM. The experimental results with a real-world dataset show that our method can inherit the merits of both structural analysis and statistical filter in preserving terrain features for multi-scale DEM representations. Numéro de notice : A2021-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1772479 Date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1772479 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96747
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 273 - 295[article]Recognition of building group patterns using graph convolutional network / Rong Zhao in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
[article]
Titre : Recognition of building group patterns using graph convolutional network Type de document : Article/Communication Auteurs : Rong Zhao, Auteur ; Tinghua Ai, Auteur ; Wenhao Yu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 400 - 417 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] espace urbain
[Termes IGN] généralisation du bâti
[Termes IGN] graphe
[Termes IGN] modélisation du bâti
[Termes IGN] reconnaissance de formesRésumé : (auteur) Recognition of building group patterns is of great significance for understanding and modeling the urban space. However, many current methods cannot fully utilize spatial information and have trouble efficiently dealing with topographic data with high complexity. The design of intelligent computational models that can act directly on topographic data to extract spatial features is critical. To this end, we propose a novel deep neural network based on graph convolutions to automatically identify building group patterns with arbitrary forms. The method first models buildings by a general graph, and then the neural network simultaneously learns the structural information as well as vertex attributes to classify building objects. We apply this method to real building data, and the experimental results show that the proposed method can effectively capture spatial information to make more accurate predictions than traditional methods. Numéro de notice : A2020-510 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1757512 Date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1757512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95663
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 400 - 417[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 RAB Revue Centre de documentation En réserve L003 Disponible The analysis and measurement of building patterns using texton co-occurrence matrices / Wenhao Yu in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)PermalinkSpatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects / Wenhao Yu in International journal of geographical information science IJGIS, vol 31 n° 1-2 (January - February 2017)PermalinkFourier-based multi-scale representation and progressive transmission of cartographic curves on the internet / Pengcheng Liu in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)PermalinkA vector field model to handle the displacement of multiple conflicts in building generalization / Tinghua Ai in International journal of geographical information science IJGIS, vol 29 n° 8 (August 2015)PermalinkDetection and correction of inconsistencies between river networks and contour data by spatial constraint knowledge / Tinghua Ai in Cartography and Geographic Information Science, Vol 42 n° 1 (January 2015)PermalinkBuilding pattern recognition in topographic data: examples on collinear and curvilinear alignments / Xiang Zhang in Geoinformatica, vol 17 n° 1 (January 2013)PermalinkA DEM generalization by minor valley branch detection and grid filling / Tinghua Ai in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 2 (March - April 2010)PermalinkFormalization and data enrichment for automated evaluation of building pattern preservation / Xiang Zhang (2010)PermalinkThe drainage network extraction from contour lines for contour line generalization / Tinghua Ai in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 2 (June 2007)PermalinkAutomated building generalization based on urban morphology and gestalt theory / Z. Li in International journal of geographical information science IJGIS, vol 18 n° 5 (august 2004)Permalink