Détail de l'auteur
Auteur P. Bowyer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating live fuel moisture content from remotely sensed reflectance / F. Mark Danson in Remote sensing of environment, vol 92 n° 3 (30 August 2004)
[article]
Titre : Estimating live fuel moisture content from remotely sensed reflectance Type de document : Article/Communication Auteurs : F. Mark Danson, Auteur ; P. Bowyer, Auteur Année de publication : 2004 Article en page(s) : pp 309 - 321 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] combustible
[Termes IGN] humidité de l'air
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] réflectance végétale
[Termes IGN] risque naturel
[Termes IGN] teneur en eau de la végétationRésumé : (Auteur) Fuel moisture content (FMC) is used in forest fire danger models to characterise the moisture status of the foliage. FMC expresses the amount of water in a leaf relative to the amount of dry matter and differs from measures of leaf water content which express the amount of water in a leaf relative to its area. FMC is related to both leaf water content and leaf dry matter content, and the relationships between FMC and remotely sensed reflectance will therefore be affected by variation in both leaf biophysical properties. This paper uses spectral reflectance data from the Leaf Optical Properties EXperiment (LOPEX) and modelled data from the Prospect leaf reflectance model to examine the relationships between FMC, leaf equivalent water thickness (EWT) and a range of spectral vegetation indices (VI) designed to estimate leaf and canopy water content. Significant correlations were found between FMC and all of the selected vegetation indices for both modelled and measured data, but statistically stronger relationships were found with leaf EWT; overall, the water index (WI) was found to be most strongly correlated with FMC. The accuracy of FMC estimation was very low when the global range of FMC was examined, but for a restricted range of 0- 100%, FMC was estimated with a root-mean-square error (RMSE) of 15% in the model simulations and 51% with the measured data. The paper shows that the estimation of live FMC from remotely sensed vegetation indices is likely to be problematic when there is variability in both leaf water content and leaf dry matter content in the target leaves. Estimating FMC from remotely sensed data at the canopy level is likely to be further complicated by spatial and temporal variations in leaf area index (LAI). Further research is required to assess the potential of canopy reflectance model inversion to estimate live fuel moisture content where a priori information on vegetation properties may be used to constrain the inversion process. Numéro de notice : A2004-383 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2004.03.017 En ligne : https://doi.org/10.1016/j.rse.2004.03.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26910
in Remote sensing of environment > vol 92 n° 3 (30 August 2004) . - pp 309 - 321[article]