Détail de l'auteur
Auteur Oliver Montenbruck |
Documents disponibles écrits par cet auteur (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
On the relation of GNSS phase center offsets and the terrestrial reference frame scale: a semi-analytical analysis / Oliver Montenbruck in Journal of geodesy, vol 96 n° 11 (November 2022)
[article]
Titre : On the relation of GNSS phase center offsets and the terrestrial reference frame scale: a semi-analytical analysis Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Peter Steigenberger, Auteur ; Arturo Villiger, Auteur ; Paul Rebischung , Auteur Année de publication : 2022 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] centre de phase
[Termes IGN] décalage d'horloge
[Termes IGN] hauteur (coordonnée)
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] orbitographie
[Termes IGN] phase
[Termes IGN] positionnement par GNSS
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSSRésumé : (auteur) Phase center offsets (PCOs) of global navigation satellites systems (GNSS) transmit antennas along the boresight axis introduce line-of-sight-dependent range changes in the modeling of GNSS observations that are strongly correlated with the estimated station heights. As a consequence, changes in the adopted PCOs impact the scale of GNSS-based realizations of the terrestrial reference frame (TRF). Vice versa, changes in the adopted TRF scale require corrections to the GNSS transmit antenna PCOs for consistent observation modeling. Early studies have determined an approximate value of α=−0.050 for the ratio of station height changes and satellite PCO changes in GPS orbit determination and phase center adjustment. However, this is mainly an empirical value and limited information is available on the actual PCO-scale relation and how it is influenced by other factors. In view of the recurring need to adjust the IGS antenna models to new ITRF scales, a semi-analytical model is developed to determine values of α for the four current GNSSs from first principles without a need for actual network data processing. Given the close coupling of satellite boresight angle and station zenith angle, satellite PCO changes are essentially compensated by a combination of station height, zenith troposphere delay, and receiver clock offset. As such, the value of α depends not only on the orbital altitude of the considered GNSS but also on the elevation-dependent distribution of GNSS observations and their weighting, as well as the elevation mask angle and the tropospheric mapping function. Based on the model, representative values of αGPS=−0.051, αGLO=−0.055, αGAL=−0.041, and αBDS-3=−0.046 are derived for GPS, GLONASS, Galileo, and BeiDou-3 at a 10∘ elevation cutoff angle. These values may vary by Δα≈0.003 depending on the specific model assumptions and data processing parameters in a precise orbit determination or precise point positioning. Likewise changes of about ±0.003 can be observed when varying the cutoff angle between 5∘ and 15∘. Numéro de notice : A2022-836 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01678-x Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01678-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102033
in Journal of geodesy > vol 96 n° 11 (November 2022) . - n° 90[article]Precise onboard time synchronization for LEO satellites / Florian Kunzi in Navigation : journal of the Institute of navigation, vol 69 n° 3 (Fall 2022)
[article]
Titre : Precise onboard time synchronization for LEO satellites Type de document : Article/Communication Auteurs : Florian Kunzi, Auteur ; Oliver Montenbruck, Auteur Année de publication : 2022 Article en page(s) : n° 531 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GNSS
[Termes IGN] horloge
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] oscillateur
[Termes IGN] récepteur DORIS
[Termes IGN] récepteur GNSS
[Termes IGN] récepteur trifréquence
[Termes IGN] synchronisation
[Termes IGN] temps réelRésumé : (auteur) Onboard time synchronization is an important requirement for a wide range of low Earth orbit (LEO) missions such as altimetry or communication services, and extends to future position, navigation, and timing (PNT) services in LEO. For GNSS-based time synchronization, continuous knowledge about the satellite’s position is required and, eventually, the quality of the position solution defines the timing precision attainable through GNSS measurements. Previous research has shown that real-time GNSS orbit determination of LEO satellites can achieve decimeter-level accuracy. This paper characterizes the performance of GNSS-based real-time clock synchronization in LEO using the satellite Sentinel-6A as a real-world case study. The satellite’s ultra-stable oscillator (USO) and triple-frequency GPS/Galileo receiver provide measurements for a navigation filter representative of real-time onboard processing. Continuous evaluation of actual flight data over 14 days shows that a 3D orbit root-mean-square (RMS) error of 11 cm and a 0.9-ns clock standard deviation can be achieved. Numéro de notice : A2022-822 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.33012/navi.531 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.33012/navi.531 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101991
in Navigation : journal of the Institute of navigation > vol 69 n° 3 (Fall 2022) . - n° 531[article]Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver / Oliver Montenbruck in Journal of geodesy, vol 95 n° 10 (October 2021)
[article]
Titre : Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Stefan Hackel, Auteur ; Martin Wermuth, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 109 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] étalonnage en vol
[Termes IGN] océanographie spatiale
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] récepteur Galileo
[Termes IGN] récepteur GPSRésumé : (auteur) The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm. Numéro de notice : A2021-702 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01563-z Date de publication en ligne : 05/09/2021 En ligne : https://doi.org/10.1007/s00190-021-01563-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98585
in Journal of geodesy > vol 95 n° 10 (October 2021) . - n° 109[article]Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations / Oliver Montenbruck in Journal of geodesy, vol 92 n° 7 (July 2018)
[article]
Titre : Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Stefan Hackel, Auteur ; Adrian Jäggi, Auteur Année de publication : 2018 Article en page(s) : pp 711 - 726 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données altimétriques
[Termes IGN] double différence
[Termes IGN] orbitographie
[Termes IGN] phase
[Termes IGN] Sentinel-3Résumé : (Auteur) The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d’Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM. Numéro de notice : A2018-453 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1090-2 Date de publication en ligne : 27/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1090-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91044
in Journal of geodesy > vol 92 n° 7 (July 2018) . - pp 711 - 726[article]Galileo status: orbits, clocks, and positioning / Peter Steigenberger in GPS solutions, vol 21 n° 2 (April 2017)
[article]
Titre : Galileo status: orbits, clocks, and positioning Type de document : Article/Communication Auteurs : Peter Steigenberger, Auteur ; Oliver Montenbruck, Auteur Année de publication : 2017 Article en page(s) : pp 319 – 331 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] constellation Galileo
[Termes IGN] données Galileo
[Termes IGN] Galileo
[Termes IGN] positionnement ponctuel précisRésumé : (auteur) The European Global Navigation Satellite System Galileo is close to declaration of initial services. The current constellation comprises a total of 12 active satellites, four of them belonging to the first generation of In-Orbit Validation satellites, while the other eight are Full Operational Capability (FOC) satellites. Although the first pair of FOC satellites suffered from a launch anomaly resulting in an elliptical orbit, these satellites can be used for scientific applications without relevant limitations. The quality of broadcast orbits and clocks has significantly improved since the beginning of routine transmissions and has reached a signal-in-space range error of 30 cm. Precise orbit products generated by the scientific community achieve an accuracy of about 5 cm if appropriate models for the solar radiation pressure are applied. The latter is also important for an assessment of the clock stability as orbit errors are mapped to the apparent clock. Dual-frequency single point positioning with broadcast orbits and clocks of nine Galileo satellites that have so far been declared healthy already enables an accuracy at a few meters. Galileo-only precise point positioning approaches a precision of 2 cm in static mode using daily solutions. Numéro de notice : A2017-211 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-016-0566-5 En ligne : http://dx.doi.org/10.1007/s10291-016-0566-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85051
in GPS solutions > vol 21 n° 2 (April 2017) . - pp 319 – 331[article]Precision on board : orbit determination of LEO satellites with real-time corrections / André Hauschild in GPS world, vol 28 n° 4 (April 2017)PermalinkSpringer handbook of Global Navigation Satellite Systems / Peter J.G. Teunissen (2017)PermalinkA study on the dependency of GNSS pseudorange biases on correlator spacing / André Hauschild in GPS solutions, vol 20 n° 2 (April 2016)PermalinkGNSS satellite geometry and attitude models / Oliver Montenbruck in Advances in space research, vol 56 n° 6 (September 2015)PermalinkThe mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning / Nandakumaran Nadarajah in GPS solutions, vol 19 n° 3 (July 2015)PermalinkEnhanced solar radiation pressure modeling for Galileo satellites / Oliver Montenbruck in Journal of geodesy, vol 89 n° 3 (March 2015)PermalinkIGS-MGEX, on prépare le terrain pour les sciences et techniques GNSS multi-constellation / Oliver Montenbruck in XYZ, n° 140 (septembre - novembre 2014)PermalinkGalileo IOV-3 broadcasts E1, E5, E6 signals / Oliver Montenbruck in GPS world, vol 24 n° 1 (January 2013)PermalinkCONGO: First GPS/GIOVE tracking network for science, research / Oliver Montenbruck in GPS world, vol 20 n° 9 (September 2009)PermalinkMaking a difference with GPS: time differences for kinematic positioning with low-cost receivers / J. Traugott in GPS world, vol 19 n° 5 (May 2008)Permalink