Détail de l'auteur
Auteur J. Malanson |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparison of the structure and accuracy of two land change models / Robert Gilmore Pontius in International journal of geographical information science IJGIS, vol 19 n° 2 (february 2005)
[article]
Titre : Comparison of the structure and accuracy of two land change models Type de document : Article/Communication Auteurs : Robert Gilmore Pontius, Auteur ; J. Malanson, Auteur Année de publication : 2005 Article en page(s) : pp 243 - 265 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse comparative
[Termes IGN] analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] Massachusetts (Etats-Unis)
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] prédictionRésumé : (Auteur) This paper compares two land change models in terms of appropriateness for various applications and predictive power. Cellular Automata Markov (CA-Markov) and Geomod are the two models, which have similar options to allow for specification of the predicted quantity and location of land categories. The most important structural difference is that CA-Markov has the ability to predict any transition among any number of categories, while Geomod predicts only a one-way transition from one category to one alternative category. To assess the predictive power, each model is run several times to predict land change in central Massachusetts, USA. The models are calibrated with information from 1971 to 1985, and then the models predict the change from 1985 to 1999. The method to measure the predictive power: 1) separates the calibration process from the validation process, 2) assesses the accuracy at multiple resolutions, and 3) compares the predictive model vis-A-vis a null model that predicts pure persistence. Among 24 model runs, the predictive models are more accurate than the null model at resolutions coarser than two kilometres, but not at resolutions finer than one kilometre. The choice of the options account for more variation in accuracy of runs than the choice of the model per se. The most accurate model runs are those that did not use spatial contiguity explicitly. For this particular study area, the added complexity of CA-Markov is of no benefit. Numéro de notice : A2005-050 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658810410001713434 En ligne : https://doi.org/10.1080/13658810410001713434 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27188
in International journal of geographical information science IJGIS > vol 19 n° 2 (february 2005) . - pp 243 - 265[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-05021 RAB Revue Centre de documentation En réserve L003 Disponible 079-05022 RAB Revue Centre de documentation En réserve L003 Disponible