Détail de l'auteur
Auteur Catherine Ottle |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach / Martin Schwartz in Earth System Science Data, vol 15 n° inconnu (2023)
[article]
Titre : FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Aurélien de Truchis, Auteur ; Jérôme Chave, Auteur ; Catherine Ottle, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Wigneron, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] données allométriques
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote sensing measurements (NASA’s GEDI LiDAR mission and ESA’s Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha-1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023). Numéro de notice : A2023-179 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-2023-196 En ligne : https://doi.org/10.5194/essd-2023-196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103341
in Earth System Science Data > vol 15 n° inconnu (2023)[article]High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)
Titre : High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Catherine Ottle, Auteur ; Aurélien de Truchis, Auteur ; Cédric Vega , Auteur ; Ibrahim Fayad, Auteur ; Martin Brandt, Auteur ; Rasmus Fensholt, Auteur ; Nicolas Baghdadi, Auteur ; François Morneau , Auteur ; David Morin, Auteur ; Dominique Guyon, Auteur ; Sylvia Dayau, Auteur ; Jean-Pierre Wigneron, Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] forêt
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Landes de Gascogne
[Termes IGN] PinophytaRésumé : (auteur) In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km2 with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region. Numéro de notice : P2022-002 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2212.10265 Date de publication en ligne : 20/12/2022 En ligne : https://doi.org/10.48550/arXiv.2212.10265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102850 Land covers change detection at coarse spatial scales based on iterative estimation and previous state information / Sylvie Le Hégarat-Mascle in Remote sensing of environment, vol 95 n° 4 (30/04/2005)
[article]
Titre : Land covers change detection at coarse spatial scales based on iterative estimation and previous state information Type de document : Article/Communication Auteurs : Sylvie Le Hégarat-Mascle, Auteur ; Catherine Ottle, Auteur ; Christiane Guérin, Auteur Année de publication : 2005 Article en page(s) : pp 464 - 479 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse diachronique
[Termes IGN] bassin hydrographique
[Termes IGN] chaîne de Markov
[Termes IGN] détection de changement
[Termes IGN] estimation statistique
[Termes IGN] image à basse résolution
[Termes IGN] image NOAA-AVHRR
[Termes IGN] image SPOT-Végétation
[Termes IGN] itération
[Termes IGN] occupation du sol
[Termes IGN] pixel
[Termes IGN] Saône (rivière)
[Termes IGN] sylvicultureRésumé : (Auteur) This study focuses on the use of coarse spatial resolution (CR, pixel size about 1kM2) remote sensing data for land cover change detection and qualification. Assuming the linear mixing model for CR pixels, the problem is that both the multitemporal class feature and the pixel composition in terms of classes are unknown. The proposed algorithm is then based on the iterative alternate estimation of each unknown variable. At each iteration, the class features are estimated, thanks to the knowledge of the composition of so pixels, and then the pixel composition is re-estimated knowing the class features. The subset of known composition pixels is the sub of pixels where no change has occurred, i.e. the previous land cover map is still valid. It is derived automatically by removing at each iteration the pixels where the new composition estimation disagrees with the former one. Finally, for the final estimation of the pixel composition, a Markovian chain model is used to guide the solution, i.e. the previous land cover map is used as a 'reminder' 'memory' term. This approach has been first validated using simulated data with different spatial resolution ratios. Then, the detection of forest change with SPOT-VGT-S 10 has been considered as an actual application case. Finally, the method has been applied to change detection on the Val de Saône watershed between the 1980s and 2000. The results obtained from three coarse resolution series, NOAA/AVHRR, SPOT/VGT-S 10 and SPOT/VGT-P, have been compared. Numéro de notice : A2005-187 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2005.01.011 En ligne : https://doi.org/10.1016/j.rse.2005.01.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27324
in Remote sensing of environment > vol 95 n° 4 (30/04/2005) . - pp 464 - 479[article]