Détail de l'auteur
Auteur Y. Bazi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images / Y. Bazi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 4 (April 2005)
[article]
Titre : An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images Type de document : Article/Communication Auteurs : Y. Bazi, Auteur ; Lorenzo Bruzzone, Auteur ; F. Melgani, Auteur Année de publication : 2005 Article en page(s) : pp 874 - 887 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] chatoiement
[Termes IGN] détection de changement
[Termes IGN] distribution de Gauss
[Termes IGN] filtrage numérique d'image
[Termes IGN] image ERS-SAR
[Termes IGN] image multitemporelle
[Termes IGN] image radar
[Termes IGN] seuillage d'imageRésumé : (Auteur) In this paper, we present a novel automatic and unsupervised change-detection approach specifically oriented to the analysis of multitemporal single-channel single-polarization synthetic aperture radar (SAR) images. This approach is based on a closed-loop process made up of three main steps: 1) a novel preprocessing based on a controlled adaptive iterative filtering; 2) a comparison between multitemporal images carried out according to a standard log-ratio operator; and 3) a novel approach to the automatic analysis of the log-ratio image for generating the change-detection map. The first step aims at reducing the speckle noise in a controlled way in order to maximize the discrimination capability between changed and unchanged classes. In the second step, the two filtered multitemporal images are compared to generate a log-ratio image that contains explicit information on changed areas. The third step produces the change-detection map according to a thresholding procedure based on a reformulation of the Kittler-Illingworth (KI) threshold selection criterion. In particular, the modified KI criterion is derived under the generalized Gaussian assumption for modeling the distributions of changed and unchanged classes. This parametric model was chosen because it is capable of better fitting the conditional densities of classes in the log-ratio image. In order to control the filtering step and, accordingly, the effects of the filtering process on change-detection accuracy, we propose to identify automatically the optimal number of despeckling filter iterations [Step 1)] by analyzing the behavior of the modified KI criterion. This results in a completely automatic and self-consistent change-detection approach that avoids the use of empirical methods for the selection of the best number of filtering iterations. Experiments carried out on two sets of multitemporal images (characterized by different levels of speckle noise) acquired by the European Remote Sensing 2 satellite SAR sensor confirm the effectiveness of the proposed unsupervised approach, which results in change-detection accuracies very similar to those that can be achieved by a manual supervised thresholding. Numéro de notice : A2005-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2004.842441 En ligne : https://doi.org/10.1109/TGRS.2004.842441 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27331
in IEEE Transactions on geoscience and remote sensing > vol 43 n° 4 (April 2005) . - pp 874 - 887[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-05042 RAB Revue Centre de documentation En réserve L003 Disponible