Détail de l'auteur
Auteur H. Sarimveis |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Radial basis function neural networks classification using very high spatial resolution satellite imagery: an application to the habitat area of Lake Kerkini (Greece) / Iphigenia Keramitsoglou in International Journal of Remote Sensing IJRS, vol 26 n° 9 (May 2005)
[article]
Titre : Radial basis function neural networks classification using very high spatial resolution satellite imagery: an application to the habitat area of Lake Kerkini (Greece) Type de document : Article/Communication Auteurs : Iphigenia Keramitsoglou, Auteur ; H. Sarimveis, Auteur ; et al., Auteur Année de publication : 2005 Article en page(s) : pp 1861 - 1880 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse texturale
[Termes IGN] bande spectrale
[Termes IGN] classificateur paramétrique
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal
[Termes IGN] fonction de base radiale
[Termes IGN] Grèce
[Termes IGN] image à très haute résolution
[Termes IGN] lacRésumé : (Auteur) This study investigates the potential of applying the radial basis function (RBF) neural network architecture for the classification of multispectral very high spatial resolution satellite images into 13 classes of various scales. For the development of the RBF classifiers, the innovative fuzzy means training algorithm is utilized, which is based on a fuzzy partition of the input space. The method requires only a short amount of time to select both the structure and the parameters of the RBF classifier. The new technique was applied to the area of Lake Kerkini, which is a wetland of great ecological value, located in northern Greece. Eleven experiments were carried out in total in order to investigate the performance of the classifier using different input parameters (spectral and textural) as well as different window sizes and neural network complexities. For comparison purposes the same satellite scene was classified using the maximum likelihood (MLH) classification with the same set of training samples. Overall, the neural network classifiers outperformed the MLH classification by 10-17%, reaching a maximum overall accuracy of 78%. Analysis showed that the selection of input parameters is vital for the success of the classifiers. On the other hand, the incorporation of textural analysis and/or modification of the window size do not affect the performance substantially. Numéro de notice : A2005-255 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160512331326594 En ligne : https://doi.org/10.1080/01431160512331326594 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27391
in International Journal of Remote Sensing IJRS > vol 26 n° 9 (May 2005) . - pp 1861 - 1880[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-05091 RAB Revue Centre de documentation En réserve L003 Exclu du prêt