Détail de l'auteur
Auteur M.A. Ibrahim |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating and accommodating uncertainty through the soft classification of remote sensing data / M.A. Ibrahim in International Journal of Remote Sensing IJRS, vol 26 n° 14 (July 2005)
[article]
Titre : Estimating and accommodating uncertainty through the soft classification of remote sensing data Type de document : Article/Communication Auteurs : M.A. Ibrahim, Auteur ; M.K. Arora, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2005 Article en page(s) : pp 2995 - 3007 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] classification floue
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] incertitude des données
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] télédétection spatialeRésumé : (Auteur) Land cover mapping is perhaps the most important application of remote sensing data. The abundance of mixed pixels (representing uncertainties in class allocation), particularly in coarse spatial resolution images, has always been known to lead to difficulties in producing accurate land cover classifications. Soft classification methods may help in quantifying uncertainties in areas of transition between various types of land cover. This study aims to estimate and accommodate uncertainties in all stages of a supervised classification process (i.e. training, allocation and testing) so as to produce accurate and meaningful land cover classifications. Three soft classification methods have been used-a probabilistic maximum likelihood classifier and the two classifiers based on fuzzy set theory (fuzzy (c-means and possibilistic c-means). Uncertainty and accuracy measures based on a fuzzy error matrix have been adopted to evaluate each classifier. All of the classifiers show an increase in classification accuracy when uncertainty is appropriately accounted for in all stages of the supervised classification. In particular, the possibilistic c-means classifier produced the highest map and individual class accuracy and has been found to be more robust to the existence of uncertainties in the datasets. The approach suggested in this paper can be used to generate accurate land cover maps, even in the presence of uncertainties in the form of mixed pixels in remote sensing images. Numéro de notice : A2005-296 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160500057806 En ligne : https://doi.org/10.1080/01431160500057806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27432
in International Journal of Remote Sensing IJRS > vol 26 n° 14 (July 2005) . - pp 2995 - 3007[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-05141 RAB Revue Centre de documentation En réserve L003 Exclu du prêt