Détail de l'autorité
KDIR 2021, 13th International Conference on Knowledge Discovery and Information Retrieval 25/10/2021 27/10/2021 Setubal Portugal OA Proceedings
nom du congrès :
KDIR 2021, 13th International Conference on Knowledge Discovery and Information Retrieval
début du congrès :
25/10/2021
fin du congrès :
27/10/2021
ville du congrès :
Setubal
pays du congrès :
Portugal
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Extracting event-related information from a corpus regarding soil industrial pollution / Chuanming Dong (2021)
Titre : Extracting event-related information from a corpus regarding soil industrial pollution Type de document : Article/Communication Auteurs : Chuanming Dong , Auteur ; Philippe Gambette, Auteur ; Catherine Dominguès , Auteur Editeur : Setúbal [Portugal] : Science and Technology Publications - Scitepress Année de publication : 2021 Projets : 1-Pas de projet / Conférence : KDIR 2021, 13th International Conference on Knowledge Discovery and Information Retrieval 25/10/2021 27/10/2021 Setubal Portugal OA Proceedings Importance : pp 217 - 224 Note générale : bibliographie
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR, ISBN 978-989-758-533-3Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] corpus
[Termes IGN] découverte de connaissances
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] pollution des sols
[Termes IGN] site pollué
[Termes IGN] traitement du langage naturelRésumé : (auteur) We study the extraction and reorganization of event-related information in texts regarding industrial pollution. The object is to build a memory of polluted sites that gathers the information about industrial events from various databases and corpora. An industrial event is described through several features as the event trigger, the industrial activity, the institution, the pollutant, etc. In order to efficiently collect information from a large corpus, it is necessary to automatize the information extraction process. To this end, we manually annotated a part of a corpus about soil industrial pollution, then we used it to train information extraction models with deep learning methods. The models we trained achieve 0.76 F-score on event feature extraction. We intend to improve the models and then use them on other text resources to enrich the polluted sites memory with extracted information about industrial events. Numéro de notice : C2021-068 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5220/0010656700003064 En ligne : https://dx.doi.org/10.5220/0010656700003064 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99540