Résumé : |
(auteur) Ce travail fait partie des études menées par le CERN dans le cadre d'un projet de futur collisionneur linéaire électron-positon (CLIC) de 50 kilomètres. En particulier, il traite d'un aspect spécifique lié à son pré-alignement dans la dimension verticale. En effet, afin de garantir une grande probabilité de collisions entre les particules incidentes (appelé luminosité), il est nécessaire que les diamètres des faisceaux, au point de collision, après 25 kilomètres d'accélérations ininterrompues, ne soient que de quelques nanomètres. Ceci n'est envisageable que si plusieurs contraintes techniques sont assurées. L'une d'elle est la contrainte de précision extrême que nécessite l'alignement des quadripôles tout au long de la future machine. Cet alignement doit se faire par rapport a une ligne droite dans l'espace Euclidien avec une précision de 10 microns sur une fenêtre glissante de 200 mètres. En pratique, cela ne peut être réalise que si un système de positionnement est capable de déterminer des positions avec cette précision. En vertical, un système basé sur des techniques de nivellement hydrostatique (HLS) bénéficie de nombreux avantages et se profile comme un sérieux candidat. En plus de leur résolution micrométrique, les HLS permettent de déterminer facilement des différences d'altitudes de points très éloignés les uns des autres. De plus, de par la simplicité de leur principe, ils s'avèrent être très robustes et particulièrement fiables en milieu radioactif. Malgré cela, les systèmes HLS sont incapables de réaliser une ligne droite Euclidienne. De fait, ils se réfèrent à la surface du fluide en équilibre hydrostatique qui les relie, dont la géométrie est une équipotentielle du champs gravifique de la terre.
Ce travail a donc pour objet principal, l'étude de faisabilité de la détermination d'équipotentielles du champs gravifique en sous-terrain dans un tunnel situe a environ 150 mètres de profondeur, et tenter de proposer une méthode pratique qui pourrait être mise en œuvre. Dans un premier temps, après avoir défini rigoureusement un opérateur mesurant le désalignement, il est démontré que la précision du cadre de la mécanique newtonienne est suffisant pour le traitement du champs de gravité dans ce projet. Ensuite, grâce à une formulation rigoureuse des forces contribuant aux variations de la surface de l'interface fluide-gaz d'un système HLS de 200 mètres, il est démontré que cette dernière peut être approximée de façon satisfaisante, à moins de 1 micron, par la surface équipotentielle du champs gravifique.
Le cadre théorique étant fixé, la précision de détermination de la géométrie des équipotentielles en sous-sol par la méthode astro-gravimétrique est analysée d'une part par des méthodes numériques de Monte-Carlo en modélisant différents types de bruits de mesures, ainsi que sur la base de nombreuses simulations de champs de gravite genres par diverses anomalies topographiques, souterraines, géologiquement réalistes, ainsi que celles provoquées par les variations de la surface du Lac Léman. II en ressort que la principale source d'incertitude provient de la correction orthométrique, et en particulier de la détermination de la valeur de l'accélération de la pesanteur moyenne le long de la ligne d'aplomb en chaque point du profil h déterminer. Le long du profil du futur CLIC, malgré le fait d'avoir la possibilité de faire des mesures gravimétriques en surface ainsi que dans le tunnel, il sera nécessaire de connaitre la densité de la roche en sous-sol, entre la topographie et le tunnel, avec une incertitude d'environ 100 a 200 mkt pour des longueurs d'ondes de 200 3'000 mètres. Concernant la partie proprement astrogeodésique, il est démontré qu'une précision suffisante peut être obtenue dans un temps raisonnable, moins d'une armée, avec la mise en oeuvre parallèle de cinq cameras zénithales de dernière génération. De ce fait, une nouvelle camera zénithale, appelée CODIAC (Compact Astrometric Digital Camera) entièrement développée et manufacturée a l'Institut de géodésie et de photogrammétrie de l'ETH Zurich est également présentée dans cette thèse.
Afin de valider la méthode astro-gravimétrique, les résultats d'une campagne de mesure au CERN, le long d'un tunnel (TZ32) de 850 mètres, sont également présentes. La comparaison de la détermination astro-gravimétrique avec les prédictions d'un modelede masses précis intégrant la topographie, les anomalies géologiques de champs proche ainsi que les tunnels TZ32 et LHC, sont de l'ordre de 20 microns pour un alignement sur 200 mètres, en accord avec les prédictions d'incertitudes.
Finalement, une méthode plus directe et non-ambigüe de détermination d'équipotentielles sous-terraines, basée sur des observations de variations de deviations de la verticale est présentée. Ces variations seraient mesurées par un nouvel instrument, appelé deflectometre interférométrique différentiel géodésique, dont le principe est très simple et consiste a determiner l'inclinaison d'un chariot le long d'un profil par interférométrie et par inclinométrie. En raison des perturbations atmosphériques, tout le dispositif doit être place dans un tube à vide prévu a cet effet. Pour une application pratique, il serait nécessaire de disposer d'un déflectomètre d'au minimum 50 mètres. Avant cela, un premier prototype de 12 mètres, été entièrement développe dans le cadre de cette thèse en collaboration avec le CERN, a été construit dans le but de valider sa faisabilité. Des premiers tests ont pu être réalises et indiquent que les systématismes résiduels de ce nouvel instrument doivent être réduis d'au moins un ordre de grandeur avant de pouvoir envisager le développement d'un instrument de plus longue portée.
|