Détail de l'auteur
Auteur H.M. Chi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A statistical self-organizing learning system for remote sensing classification / H.M. Chi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 8 (August 2005)
[article]
Titre : A statistical self-organizing learning system for remote sensing classification Type de document : Article/Communication Auteurs : H.M. Chi, Auteur ; O.K. Ersoy, Auteur Année de publication : 2005 Article en page(s) : pp 1890 - 1900 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] carte de Kohonen
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] méthode des moindres carrés
[Termes IGN] noeud
[Termes IGN] système expert
[Termes IGN] transformation non linéaireRésumé : (Auteur) A new learning system called a statistical self-organizing learning system (SSOLS), combining functional-link neural networks, statistical hypothesis testing, and self-organization of a number of enhancement nodes, is introduced for remote sensing applications. Its structure consists of two stages, a mapping stage and a learning stage. The input training vectors are initially mapped to the enhancement vectors in the mapping stage by multiplying with a random matrix, followed by pointwise nonlinear transformations. Starting with only one enhancement node, the enhancement layer incrementally adds an extra node in each iteration. The optimum dimension of the enhancement layer is determined by using an efficient leave-one-out cross-validation method. In this way, the number of enhancement nodes is also learned automatically. A t-test algorithm can also be applied to the mapping stage to mitigate the effect of overfitting and to further reduce the number of enhancement nodes required, resulting in a more compact network. In the learning stage, both the input vectors and the enhancement vectors are fed into a least squares learning module to obtain the estimated output vectors. This is made possible by choosing the output layer linear. In addition, several SSOLSs can be trained independently in parallel to form a consensual SSOLS, whose final output is a linear combination of the outputs of each SSOLS module. The SSOLS is simple, fast to compute, and suitable for remote sensing applications, especially with hyperspectral image data of high dimensionality. Numéro de notice : A2005-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.851188 En ligne : https://doi.org/10.1109/TGRS.2005.851188 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27529
in IEEE Transactions on geoscience and remote sensing > vol 43 n° 8 (August 2005) . - pp 1890 - 1900[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-05081 RAB Revue Centre de documentation En réserve L003 Disponible