Détail de l'auteur
Auteur O.K. Ersoy |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images / N.G. Kasapoglu in IEEE Transactions on geoscience and remote sensing, vol 45 n° 12 Tome 1 (December 2007)
[article]
Titre : Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images Type de document : Article/Communication Auteurs : N.G. Kasapoglu, Auteur ; O.K. Ersoy, Auteur Année de publication : 2007 Article en page(s) : pp 3880 - 3893 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] précision de la classificationRésumé : (Auteur) Effective partitioning of the feature space for high classification accuracy with due attention to rare class members is often a difficult task. In this paper, the border vector detection and adaptation (BVDA) algorithm is proposed for this purpose. The BVDA consists of two parts. In the first part of the algorithm, some specially selected training samples are assigned as initial reference vectors called border vectors. In the second part of the algorithm, the border vectors are adapted by moving them toward the decision boundaries. At the end of the adaptation process, the border vectors are finalized. The method next uses the minimum distance to border vector rule for classification. In supervised learning, the training process should be unbiased to reach more accurate results in testing. In the BVDA, decision region borders are related to the initialization of the border vectors and the input ordering of the training samples. Consensus strategy can be applied with cross validation to reduce these dependencies. The performance of the BVDA and consensual BVDA were studied in comparison to other classification algorithms including neural network with backpropagation learning, support vector machines, and some statistical classification techniques. Copyright IEEE Numéro de notice : A2007-582 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2007.900699 En ligne : https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4378538 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28945
in IEEE Transactions on geoscience and remote sensing > vol 45 n° 12 Tome 1 (December 2007) . - pp 3880 - 3893[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-07121A RAB Revue Centre de documentation En réserve L003 Disponible A statistical self-organizing learning system for remote sensing classification / H.M. Chi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 8 (August 2005)
[article]
Titre : A statistical self-organizing learning system for remote sensing classification Type de document : Article/Communication Auteurs : H.M. Chi, Auteur ; O.K. Ersoy, Auteur Année de publication : 2005 Article en page(s) : pp 1890 - 1900 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] carte de Kohonen
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] méthode des moindres carrés
[Termes IGN] noeud
[Termes IGN] système expert
[Termes IGN] transformation non linéaireRésumé : (Auteur) A new learning system called a statistical self-organizing learning system (SSOLS), combining functional-link neural networks, statistical hypothesis testing, and self-organization of a number of enhancement nodes, is introduced for remote sensing applications. Its structure consists of two stages, a mapping stage and a learning stage. The input training vectors are initially mapped to the enhancement vectors in the mapping stage by multiplying with a random matrix, followed by pointwise nonlinear transformations. Starting with only one enhancement node, the enhancement layer incrementally adds an extra node in each iteration. The optimum dimension of the enhancement layer is determined by using an efficient leave-one-out cross-validation method. In this way, the number of enhancement nodes is also learned automatically. A t-test algorithm can also be applied to the mapping stage to mitigate the effect of overfitting and to further reduce the number of enhancement nodes required, resulting in a more compact network. In the learning stage, both the input vectors and the enhancement vectors are fed into a least squares learning module to obtain the estimated output vectors. This is made possible by choosing the output layer linear. In addition, several SSOLSs can be trained independently in parallel to form a consensual SSOLS, whose final output is a linear combination of the outputs of each SSOLS module. The SSOLS is simple, fast to compute, and suitable for remote sensing applications, especially with hyperspectral image data of high dimensionality. Numéro de notice : A2005-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.851188 En ligne : https://doi.org/10.1109/TGRS.2005.851188 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27529
in IEEE Transactions on geoscience and remote sensing > vol 43 n° 8 (August 2005) . - pp 1890 - 1900[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-05081 RAB Revue Centre de documentation En réserve L003 Disponible