Détail de l'indexation
MPPMD : Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation |
Ouvrages de la bibliothèque en indexation MPPMD (78)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Development of object detectors for satellite images by deep learning / Alissa Kouraeva (2022)
Titre : Development of object detectors for satellite images by deep learning Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 57 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 3e année, Cycle PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] angle d'incidence
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image aérienne
[Termes IGN] image Pléiades-HR
[Termes IGN] image Pléiades-Neo
[Termes IGN] jeu de données
[Termes IGN] OpenStreetMap
[Termes IGN] réalité de terrain
[Termes IGN] recalage d'imageMots-clés libres : Frame Field Learning algorithm Index. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) With various uses cases in different sectors - marine, cartography, defense - object detection in satellite images is at the heart of image processing methods. This study aims to test existing building detection algorithms and improve them with the final goal being a precise cartography of buildings for 3D reconstruction with a high level of details. The Polygonization by Frame Field Learning algorithm is tested on different types of images: aerial images (50cm resolution), satellite images with 50cm (Pleiades) and 30cm (Pleiades Neo) resolutions. The ground truth is either already provided (Digitanie) or has to be retrieved from open access databases (OSM or BD TOPO IGN). Some problems of ground truth overlap appear in Pleiades neo images due to the relative precision in positioning of different data and also due to the incidence angle, that provides a greater revisiting capability. A re-implementation of the Frame Field Learning algorithm with the PyTorch Lightning framework is done in this study, with different experiments conducted concerning the configuration of the algorithm. Note de contenu : Introduction
1- Data
2- Methods
3- Results and discussion
ConclusionNuméro de notice : 24052 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Airbus Defence and Space Geo SA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101926 Évolution rétrospective et prospective d’un massif dunaire par imagerie multispectrale et LiDAR / Iris Jeuffrard (2022)
Titre : Évolution rétrospective et prospective d’un massif dunaire par imagerie multispectrale et LiDAR : Anse du Guesclin, 1948 - 2100 Type de document : Mémoire Auteurs : Iris Jeuffrard, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Note générale : bibliographie
Rapport de fin d'étude, cycle des Ingénieurs diplômés de l’ENSG 3ème année, Spécialité PPMDLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement durable
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] dune
[Termes IGN] érosion côtière
[Termes IGN] Ille-et-Vilaine (35)
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] littoral
[Termes IGN] modèle numérique de terrain
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] trait de côteIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) Le Centre de Géo-Écologie Littorale (CGEL), autrefois Laboratoire de Géomorphologie dépend de l’École Pratique des Hautes Études (EPHE) depuis 1936 et s’est toujours consacré à l’observation des écosystèmes littoraux à partir d’images de très haute résolution. Il répond à différentes missions d’expertise sur le littoral, dans le but d’aider les gestionnaires à évaluer les risques et mettre en place des stratégies d’aménagement durables. Tout naturellement, le Service Patrimoine Naturel du Département d’Ille-et-Vilaine a fait appel au CGEL pour cartographier l’évolution d’un espace naturel sensible (ENS) sous leur protection, l’anse du Guesclin. Il abrite un complexe dunaire, écosystème précieux pour tous les services écosystémiques qu’il rend (richesse d’habitat et de biodiversité, barrière naturelle contre les aléas météo-marins, tourisme, etc.). Fragilisé par le passé par des événements météo-marins et des pressions anthropiques, il est aujourd’hui menacé par l’érosion. Le Département a donc engagé depuis 2010 un plan de réhabilitation. L’objectif est de fournir une cartographie fine de l’évolution pluri-décennale passée et future du massif dunaire de l’anse du Guesclin. Dans un premier temps l’évolution de la dune est étudiée à partir d’images aériennes historiques depuis 1948. Des marqueurs évolutifs (trait de côte, surface de végétation dunaire) permettent de retracer l’historique du massif. En complément, les variations géomorphologiques depuis 2010 sont quantifiées à partir d’acquisitions drone LiDAR réalisées par l’IGN, le SHOM et le CGEL. Les séries temporelles du recul du trait de côte et de la surface de végétation sont expliquées par un modèle de régression linéaire et de régression par Random Forest en fonction de paramètres météo-marins historiques (température, vent, précipitations, niveau moyen de la mer). Les modèles sont ensuite appliqués avec les prévisions du GIEC selon différents scénarios pour prédire l’évolution des marqueurs. Le modèle retenu (R2=0.84, RMSE=3.07m) prévoit ainsi un recul du trait de côte de 14 à 31 m à moyen terme selon les scénarios. Les résultats confirment les tendances d’érosion observées jusqu’à présent, et ce dès le court terme. La végétation serait favorisée par l’augmentation des gaz à effet de serre mais dépend de l’état de conservation du massif, qui est lui très vulnérable aux événements météorologiques extrêmes. Note de contenu : Introduction
1. Analyse rétrospective
1.1 Démarche
1.2 Site d’étude et données
1.3 Prétraitement
1.4 Étude du trait de côte
1.5 Étude de la surface de la végétation dunaire
1.6 Étude du volume du massif dunaire
1.7 Conclusion
2. Analyse prospective
2.1 Méthode
2.2 Données
2.3 Résultats
2.4 Limites et conclusions
ConclusionNuméro de notice : 24050 Affiliation des auteurs : IGN (2020- ) Thématique : IMAGERIE Nature : Mémoire de fin d'études IT Organisme de stage : Service Patrimoine Naturel du Département d’Ille-et-Vilaine Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101923 Documents numériques
en open access
Évolution rétrospective... - pdf auteur -Adobe Acrobat PDF Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien / Tiecoumba Ibrahim Tamela (2022)
Titre : Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien Type de document : Mémoire Auteurs : Tiecoumba Ibrahim Tamela, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 68 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de Master PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cadastre napoléonien
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] colorimétrie
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] manuscrit
[Termes IGN] parcelle cadastrale
[Termes IGN] planche cadastrale
[Termes IGN] reconnaissance de caractèresIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) Le laboratoire Géomatique et Foncier est un laboratoire du Conservatoire National des Arts et Métiers (CNAM). Le laboratoire mène des recherches sur deux axes principaux à savoir la géomatique et le droit et l’analyse de l’action publique. C’est dans le cadre de la recherche en géomatique, le laboratoire a initié, pour l’amélioration de sa chaîne GeoVectoMoCad (chaîne de vectorisation, Géoréférencement et Mosaïquage du cadastre), un travail sur la reconnaissance de numéros manuscrits sur les planches cadastrales par apprentissage profond. La détection par apprentissage profond, nécessite un jeu de données, similaire aux données que l’on veut étudier et en grandes quantité, pour permettre au réseau d’apprendre avec une partie des données et de faire de bonnes prédictions sur de nouvelles données. Pour cela, nous générons des données synthétiques en extrayant des fonds de cadastre réel sans chiffres, puis nous augmentons la donnée par des transformations et insérons des chiffres de la base de données DIDA. Puis, nous générons un deuxième jeu de données de sous-images extraites directement du cadastre. Enfin, nous appliquons un algorithme de reconnaissance de numéros sur les deux jeux de données. Après avoir appliqué ces algorithmes, nous présentons les résultats qui montrent de bons résultats de détection, mais parfois des problèmes de détection et de reconnaissance. Nous proposons pour terminer des pistes d’amélioration. Note de contenu : Introduction
1- Etat de l'art sur la reconnaissance des chiffres manuscrits des documents anciens
2- Création de jeu de données pour la détection de numéros de parcelles
3- Entrainement et évaluation du modèle sur les données
ConclusionNuméro de notice : 24058 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire masters divers Organisme de stage : Laboratoire de Géomatique et Foncier (ESGT-CNAM) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101964 Documents numériques
en open access
Génération d’un jeu de données... - pdf auteur -Adobe Acrobat PDF
Titre : Variations de volume des lacs pour l'analyse climatique : Améliorer la connaissance de la quantité d’eau des lacs et leur variation à partir de données satellitaires Type de document : Mémoire Auteurs : Iris Lucas, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 67 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des Ingénieurs diplômés de l’ENSG 3ème année, Spécialité PPMDLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] Canada
[Termes IGN] carte hypsométrique
[Termes IGN] Champagne (province, comté)
[Termes IGN] données altimétriques
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-8
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] lac
[Termes IGN] méthode robuste
[Termes IGN] modèle de Gauss-Helmert
[Termes IGN] Ransac (algorithme)
[Termes IGN] régression
[Termes IGN] variation temporelle
[Termes IGN] volume d'eauIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) La ressource en eau douce est limitée, son étude fait partie des axes majeurs des études environnementales. C’est au sein de la cellule hydrologie continentale de CLS, pour le compte d’Apside que je me suis penchée sur cette question, appliquant les savoirs acquis en géomatique durant mes années à l’ENSG. L’objectif de ce stage est d’améliorer la connaissance de la quantité d’eau des lacs et leur variation à partir de données satellitaires. Ce savoir pourra être appliqué dans divers projets sur l’étude des lacs à CLS. Etudier les variations de volume nécessite l’utilisation de surfaces d’eau que l’on peut extraire par imagerie satellitaire (Sentinel-2, Landsat-8) et hauteurs d’eau provenant de satellites altimétriques (accessibles sur la plateforme Hydroweb). Pour ce faire, j’ai développé un algorithme d’extraction de surfaces d’eau par télédétection optique, puis développé une méthode d’estimation robuste pour dégager une courbe hypsométrique. Grâce à cette courbe, j’ai pu déterminer des variations de volumes pour divers bassins. Ce rapport détaille le processus développé, la méthodologie suivie et les éventuelles pistes d’amélioration possibles. Note de contenu :
1- Introduction
2- Extraire les données de surfaces d’eau
3- Extraire le profil des lacs : la courbe hypsométrique
4- Dernière étape de la chaine : génération des variations de volume
5- ConclusionNuméro de notice : 24053 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de fin d'études IT Organisme de stage : Apside Toulouse Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101951 Documents numériques
en open access
Variations de volume... - pdf auteur -Adobe Acrobat PDF Suivi des vignes par télédétection de proximité : le deep learning au service de l’agriculture de précision / Sami Beniaouf (2021)
Titre : Suivi des vignes par télédétection de proximité : le deep learning au service de l’agriculture de précision Type de document : Mémoire Auteurs : Sami Beniaouf, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2021 Importance : 65 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de Master PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] géoréférencement
[Termes IGN] image captée par drone
[Termes IGN] maladie phytosanitaire
[Termes IGN] semis de points
[Termes IGN] surveillance de la végétation
[Termes IGN] Vaud (Suisse)
[Termes IGN] viticultureIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) Au cours des dernières années, les progrès rapides des techniques d'apprentissage en profondeur ont considérablement accéléré l'élan de la détection d'objets, qui constitue la base de nombreuses tâches de vision par ordinateur, telles que la segmentation d'instances, la classification d'images, le suivi d'objets et bien d'autres. Ce travail s’intéresse à l’utilisation de cette technique ainsi que la photogrammétrie terrestre et la télédétection dans le domaine de la viticulture, pour l’extraction et la cartographie d’informations physiologiques lié aux vignes. Cette étude s’est orientée vers la détection de la maladie de Mildiou au moyen d’une caméra multispectrale. Le mildiou de la vigne est causé par l'organisme de type fongique Plasmopara viticola, qui se produit généralement pendant les années excessivement humides et chaudes. Le champignon provoque directement une perte de rendement par la pourriture des feuilles, des grappes et des pousses. La détection d’objets par segmentation en instances a été réalisé en utilisant le modèle d’apprentissage pré-entraîné Mask R-CNN, dont les couches de classification ont été réentraîné avec des images de vignes acquises et labélisées. La méthodologie suivie consiste en l’extraction de masques d’objets des classes d’intérêt en utilisant le modèle entraîné, qui sont ensuite importés séparément sur les images. La reconstruction du nuage de points 3D à partir d’images masquées ensuit la génération d’un nuage de point de la classe cible. En segmentant ces nuages de points par instances, le calcul des coordonnées des barycentres de ces instances sont représentés finalement sur une carte. Note de contenu :
Introduction générale
I- Introduction à la viticulture de précision
I.1- Télédétection
I.2- Optimisation du rendement
I.3- Détection de maladies
I.4- Apprentissage profond
II- Acquisition des images et méthodologie
II.1- Acquisition des images
II.2- Méthodologie
Résultats et analyseNuméro de notice : 28393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire PPMD Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98747 Documents numériques
peut être téléchargé
Suivi des vignes par télédétection... - pdf auteur -Adobe Acrobat PDF Simulation d’éclairements des surfaces ombrées en zone urbaine par transfert radiatif 3D (modèle DART) / Yulu Xi (2020)PermalinkPermalinkCartographie des déformations sur le site de colocalisation de Grasse par méthode INSAR / Isabelle Delprat (2019)PermalinkMise en place d’un système sondeur multifaisceaux dans une embarcation légère semi-rigide pour campagne de mesure bathymétrique et couplage avec un scanner terrestre, GNSS et INS / Alexandre Girard (2019)PermalinkPermalinkCaractérisation et qualification de Modèles Numériques de Surfaces (MNS) - Analyse de la cohérence avec des masques d’eau / Guillaume Sutter (2018)PermalinkCartographie des déformations de surface sur l’île de Taiwan par interférométrie RADAR Sentinel-1 / Miloud Fekaouni (2018)PermalinkContribution actuelle de la calotte Antarctique à la variation du niveau marin / Clémence Chupin (2018)PermalinkEtude préalable à l'installation d'un coin radar sur le site de co-localisation de Calern / Guillaume Schmidt (2018)PermalinkEvaluation des performances des modèles numérique d’élévation issus de l’imagerie tri-stéréo Pléiades pour le suivi de l’évolution morphologique des dunes littorales / Mannaïg L'haridon (2018)Permalink