Détail de l'auteur
Auteur C. Bone |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations / C. Bone in International Journal of Remote Sensing IJRS, vol 26 n° 21 (November 2005)
[article]
Titre : Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations Type de document : Article/Communication Auteurs : C. Bone, Auteur ; Suzana Dragićević, Auteur ; A. Roberts, Auteur Année de publication : 2005 Article en page(s) : pp 4809 - 4828 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] classification floue
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] forêt
[Termes IGN] incertitude des données
[Termes IGN] Insecta
[Termes IGN] modèle cartographique
[Termes IGN] Pinus ponderosa
[Termes IGN] sous ensemble flou
[Termes IGN] système expertRésumé : (Auteur) The use of fuzzy set theory has become common in remote sensing and geographical information system (GIS) applications to deal with issues surrounding the uncertainty of geospatial datasets. The objective of this study is to develop a model that integrates the concept of fuzzy set theory with remote sensing and GIS in order to produce susceptibility maps of insect infestations in forest landscapes. Fuzzy set theory was applied to information extracted from multiple-year high resolution remote sensing data and integrated in a rasterbased GIS to create a map indicating the spatial variation of insect susceptibility in a landscape. Variable-specific fuzzy membership functions were developed based on expert knowledge and existing data, and integrated through a semantic import model. The results from a case study on mountain pine beetle (Dendroctonus ponderosae Hopkins) illustrate that the model provides a method to successfully estimate areas of varying susceptibility to insect infestation from high resolution remote sensing images. It was concluded that fuzzy sets are an adequate method for dealing with uncertainty in defining susceptibility variables. The susceptibility maps can be utilized for guiding management decisions based on the spatial aspects of insect-host relationships. Numéro de notice : A2005-468 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160500239180 En ligne : https://doi.org/10.1080/01431160500239180 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27604
in International Journal of Remote Sensing IJRS > vol 26 n° 21 (November 2005) . - pp 4809 - 4828[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-05211 RAB Revue Centre de documentation En réserve L003 Disponible