Détail de l'auteur
Auteur Shinto Eguchi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Supervised image classification by contextual adaboost based on posteriors in neighborhoods / Ryuei Nishii in IEEE Transactions on geoscience and remote sensing, vol 43 n° 11 (November 2005)
[article]
Titre : Supervised image classification by contextual adaboost based on posteriors in neighborhoods Type de document : Article/Communication Auteurs : Ryuei Nishii, Auteur ; Shinto Eguchi, Auteur Année de publication : 2005 Conférence : IGARSS 2004, International Geoscience And Remote Sensing Symposium, Science for society: exploring and manging a changing planet 20/09/2004 24/09/2004 Anchorage Alaska - Etats-Unis Proceedings IEEE Article en page(s) : pp 2547 - 2554 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] axiome de Bayes
[Termes IGN] classification contextuelle
[Termes IGN] classification dirigée
[Termes IGN] géostatistique
[Termes IGN] probabilités
[Termes IGN] segmentation d'imageRésumé : (Auteur) AdaBoost, a machine learning technique, is employed for supervised classification of land-cover categories of geostatistical data. We introduce contextual classifiers based on neighboring pixels. First, posterior probabilities are calculated at all pixels. Then averages of the log posteriors are calculated in different neighborhoods and are then used as contextual classification functions. Weights for the classification functions can be determined by minimizing the empirical risk with multiclass. Finally, a convex combination of classification functions is obtained. The classification is performed by a noniterative maximization procedure. The proposed method is applied to artificial multispectral images and benchmark datasets. The performance of the proposed method is excellent and similar to Markov-random-field-based classifier, which requires an iterative maximization procedure. Numéro de notice : A2005-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.848693 En ligne : https://doi.org/10.1109/TGRS.2005.848693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27631
in IEEE Transactions on geoscience and remote sensing > vol 43 n° 11 (November 2005) . - pp 2547 - 2554[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-05111 RAB Revue Centre de documentation En réserve L003 Disponible