Détail de l'auteur
Auteur T.G. Ngigi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation / Y.O. Ouma in International Journal of Remote Sensing IJRS, vol 27 n°1-2 (January 2006)
[article]
Titre : On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation Type de document : Article/Communication Auteurs : Y.O. Ouma, Auteur ; T.G. Ngigi, Auteur ; et al., Auteur Année de publication : 2006 Article en page(s) : pp 73 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] arbre urbain
[Termes IGN] données multiéchelles
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] optimisation (mathématiques)
[Termes IGN] texture d'image
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Integration of spectral and multi-scale texture is proposed in order to improve the detection and classification of urban-trees from Quickbird imagery. Arguing that spatial -structure semantic information exits at a hierarchy of scales and that texture is a consequence of objects in the hierarchy, multi-scale wavelets decomposition is proposed for the extraction of vertical, horizontal and diagonal texture components. Pre-selection of texture sub-bands is achieved via mean, entropy, variance and second angular moment. The resulting sub-bands are analysed for separability between trees and similarly reflecting features, such as rice-paddy, grass/lawns, open ground and playground, based on KuIlbackLeibler (KL) divergence and Battacharyya distance. The results are ranked and classified with k-means. In comparison with the field data, KL gave the best results with omission and commission error of 4.4%. The proposed methodology has the ability to capture the increased natural variability in reflectance and improved the accuracy by 23.6%, in comparison with spectral-only. Numéro de notice : A2006-059 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431160500295885 En ligne : https://doi.org/10.1080/01431160500295885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27786
in International Journal of Remote Sensing IJRS > vol 27 n°1-2 (January 2006) . - pp 73 - 104[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-06011 RAB Revue Centre de documentation En réserve L003 Disponible