Détail de l'auteur
Auteur H. Stewenius |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Recent developments on direct relative orientation / H. Stewenius in ISPRS Journal of photogrammetry and remote sensing, vol 60 n° 4 (June - July 2006)
[article]
Titre : Recent developments on direct relative orientation Type de document : Article/Communication Auteurs : H. Stewenius, Auteur ; C. Engels, Auteur ; D. Nister, Auteur Année de publication : 2006 Article en page(s) : pp 284 - 294 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse comparative
[Termes IGN] Matlab
[Termes IGN] matrice
[Termes IGN] orientation relative
[Termes IGN] transformation polynomiale
[Termes IGN] vecteur propreRésumé : (Auteur) This paper presents a novel version of the five-point relative orientation algorithm given in Nister [Nister, D., 2004. An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (6), 756–770]. The name of the algorithm arises from the fact that it can operate even on the minimal five-point correspondences required for a finite number of solutions to relative orientation. For the minimal five correspondences, the algorithm returns up to 10 real solutions. The algorithm can also operate on many points. Like the previous version of the five-point algorithm, our method can operate correctly even in the face of critical surfaces, including planar and ruled quadric scenes. The paper presents comparisons with other direct methods, including the previously developed five-point method, two different six-point methods, the seven-point method, and the eight-point method. It is shown that the five-point method is superior in most cases among the direct methods. The new version of the algorithm was developed from the perspective of algebraic geometry and is presented in the context of computing a Gröbner basis. The constraints are formulated in terms of polynomial equations in the entries of the fundamental matrix. The polynomial equations generate an algebraic ideal for which a Gröbner basis is computed. The Gröbner basis is used to compute the action matrix for multiplication by a single variable monomial. The eigenvectors of the action matrix give the solutions for all the variables and thereby also relative orientation. Using a Gröbner basis makes the solution clear and easy to explain. Copyright ISPRS Numéro de notice : A2006-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2006.03.005 En ligne : https://doi.org/10.1016/j.isprsjprs.2006.03.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28009
in ISPRS Journal of photogrammetry and remote sensing > vol 60 n° 4 (June - July 2006) . - pp 284 - 294[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-06041 SL Revue Centre de documentation Revues en salle Disponible