Détail de l'auteur
Auteur M.A. White |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Real-time monitoring and short-term forecasting of land surface phenology / M.A. White in Remote sensing of environment, vol 104 n° 1 (15/09/2006)
[article]
Titre : Real-time monitoring and short-term forecasting of land surface phenology Type de document : Article/Communication Auteurs : M.A. White, Auteur ; Ramakrishna R. Nemani, Auteur Année de publication : 2006 Article en page(s) : pp 43 - 49 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse diachronique
[Termes IGN] phénologie
[Termes IGN] prédiction
[Termes IGN] prévision à court terme
[Termes IGN] seuillage d'image
[Termes IGN] surface du sol
[Termes IGN] surveillance écologique
[Termes IGN] temps réelRésumé : (Auteur) Land surface phenology is an important process for real-time monitoring and short-term forecasting in diverse land management, health, and hydrologic modeling applications. Yet current efforts to characterize phenological processes are limited by remote sensing challenges and lack of uncertainty estimates. Here, for a global distribution of phenologically and climatically similar phenoregions, we used the Advanced Very High Resolution Radiometer to develop a conceptually and computationally simple technique for real-time and forecast applications. Our overall approach was to analyze the phenological behavior of groups of pixels without recourse to smoothing or fitting. We used a 3-step initial process: (1) define a phenoregion specific normalized difference vegetation index threshold; (2) for all days from 1982–2003, calculate the percent of pixels above the threshold (PAT); (3) calculate daily 1982–2003 empirical distributions of PAT. For real-time monitoring, the current PAT may then be compared to the historical range of variability and visualized in relation to user-defined levels. Using similar concepts, we projected daily PAT up to one month in the future and compared predicted and actual dates at which a hypothetical PAT was reached. We found that the maximum lead-time of phenological forecasts could be analytically defined for user-specified uncertainty levels. The approach is adaptable to different remote sensing technologies and provides a foundation for ascribing a sequence of ground conditions (e.g. snowmelt, vegetative growth, pollen production, insect phenology) to remotely sensed land surface phenology observations. Copyright Elsevier Numéro de notice : A2006-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2006.04.014 En ligne : https://doi.org/10.1016/j.rse.2006.04.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28117
in Remote sensing of environment > vol 104 n° 1 (15/09/2006) . - pp 43 - 49[article]