Détail de l'auteur
Auteur S. Bettadpur |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GRACE-FO precise orbit determination and gravity recovery / Z. Kang in Journal of geodesy, vol 94 n° 9 (September 2020)
[article]
Titre : GRACE-FO precise orbit determination and gravity recovery Type de document : Article/Communication Auteurs : Z. Kang, Auteur ; S. Bettadpur, Auteur ; P. Nagel, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bande K
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] double différence
[Termes IGN] interféromètre au laser
[Termes IGN] orbite précise
[Termes IGN] orbitographieRésumé : (auteur) The gravity recovery and climate experiment follow-on (GRACE-FO) satellites, launched in May of 2018, are equipped with geodetic quality GPS receivers for precise orbit determination (POD) and gravity recovery. The primary objective of the GRACE-FO mission is to map the time-variable and mean gravity field of the Earth. To achieve this goal, both GRACE-FO satellites are additionally equipped with a K-band ranging (KBR) system, accelerometers and star trackers. Data processing strategies, data weighting approaches and impacts of observation types and rates are investigated in order to determine the most efficient approach for processing GRACE-FO multi-type data for precise orbit determination and gravity recovery. Two GPS observation types, un-differenced (UD) and double-differenced (DD) observations in general can be used for GPS-based POD and gravity recovery. The GRACE-FO KBR observations are mainly used for gravity recovery, but they can be also used for POD to improve the relative orbit accuracy. The main purpose of this paper is to study the impacts of the DD, UD and KBR observations on GRACE-FO POD and gravity recovery. The precise orbit accuracy is assessed using several tests, which include analysis of orbital fits, satellite laser ranging residuals, KBR range residuals and orbit comparisons. The gravity recovery is validated by comparing different gravity solutions through coefficient-wise comparison, degree difference variances and water height variations over the whole Earth and selected area and river basins. Numéro de notice : A2020-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01414-3 Date de publication en ligne : 16/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01414-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95744
in Journal of geodesy > vol 94 n° 9 (September 2020) . - n° 85[article]High-frequency signal and noise estimates of CSR GRACE RL04 / J.A. Bonin in Journal of geodesy, vol 86 n° 12 (December 2012)
[article]
Titre : High-frequency signal and noise estimates of CSR GRACE RL04 Type de document : Article/Communication Auteurs : J.A. Bonin, Auteur ; S. Bettadpur, Auteur ; B. Tapley, Auteur Année de publication : 2012 Article en page(s) : pp 1165 - 1177 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bruit (théorie du signal)
[Termes IGN] données GRACE
[Termes IGN] erreur
[Termes IGN] filtrage du bruit
[Termes IGN] force de gravitation
[Termes IGN] levé gravimétrique
[Termes IGN] rapport signal sur bruit
[Termes IGN] traitement du signalRésumé : (Auteur) A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04’s poor ability to accurately and reliably measure hydrological signal above 3–9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors. Numéro de notice : A2012-651 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0572-5 Date de publication en ligne : 03/06/2012 En ligne : https://doi.org/10.1007/s00190-012-0572-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32097
in Journal of geodesy > vol 86 n° 12 (December 2012) . - pp 1165 - 1177[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012121 RAB Revue Centre de documentation En réserve L003 Disponible Reducing errors in the GRACE gravity solutions using regularization / H. Save in Journal of geodesy, vol 86 n° 9 (September 2012)
[article]
Titre : Reducing errors in the GRACE gravity solutions using regularization Type de document : Article/Communication Auteurs : H. Save, Auteur ; S. Bettadpur, Auteur ; B. Tapley, Auteur Année de publication : 2012 Article en page(s) : pp 695 - 711 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] gravimétrie
[Termes IGN] harmonique sphérique
[Termes IGN] levé gravimétrique
[Termes IGN] régularisation de TychonoffRésumé : (Auteur) The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth’s monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003–Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE. Numéro de notice : A2012-467 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0548-5 Date de publication en ligne : 10/03/2012 En ligne : https://doi.org/10.1007/s00190-012-0548-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31913
in Journal of geodesy > vol 86 n° 9 (September 2012) . - pp 695 - 711[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012091 RAB Revue Centre de documentation En réserve L003 Disponible Geocenter variations derived from GPS tracking of the GRACE satellites / Z. Kang in Journal of geodesy, vol 83 n° 10 (October 2009)
[article]
Titre : Geocenter variations derived from GPS tracking of the GRACE satellites Type de document : Article/Communication Auteurs : Z. Kang, Auteur ; B. Tapley, Auteur ; J. Chen, Auteur ; John Ries, Auteur ; S. Bettadpur, Auteur Année de publication : 2009 Article en page(s) : pp 895 - 901 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] géocentre
[Termes IGN] GRACE
[Termes IGN] orbite basse
[Termes IGN] orbitographie par GNSS
[Termes IGN] poursuite de satelliteRésumé : (Auteur) Two 4.5-year sets of daily geocenter variations have been derived from GPS-LEO (Low-Earth Orbiter) tracking of the GRACE (Gravity Recovery And Climate Experiment) satellites. The twin GRACE satellites, launched in March 2002, are each equipped with a BlackJack global positioning system (GPS) receiver for precise orbit determination and gravity recovery. Since launch, there have been significant improvements in the background force models used for satellite orbit determination, most notably the model for the geopotential, which has resulted in significant improvements to the orbit determination accuracy. The purpose of this paper is to investigate the potential for determining seasonal (annual and semiannual) geocenter variations using GPS-LEO tracking data from the GRACE twin satellites. Internal comparison between the GRACE-A and GRACE-B derived geocenter variations shows good agreement. In addition, the annual and semiannual variations of geocenter motions determined from this study have been compared with other space geodetic solutions and predictions from geophysical models. The comparisons show good agreement except for the phase of the z-translation component. Copyright Springer Numéro de notice : A2009-428 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-009-0307-4 En ligne : https://doi.org/10.1007/s00190-009-0307-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30059
in Journal of geodesy > vol 83 n° 10 (October 2009) . - pp 895 - 901[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-09091 SL Revue Centre de documentation Revues en salle Disponible Global Geodetic Observing System : Meeting the Requirements of a Global Society on a Changing Planet in 2020, ch. 2. The goals, achievements, and tools of modern geodesy / Hans-Peter Plag (2009)
Titre de série : Global Geodetic Observing System : Meeting the Requirements of a Global Society on a Changing Planet in 2020, ch. 2 Titre : The goals, achievements, and tools of modern geodesy Type de document : Chapitre/Contribution Auteurs : Hans-Peter Plag, Auteur ; Zuheir Altamimi , Auteur ; S. Bettadpur, Auteur ; et al., Auteur Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2009 Importance : pp 15 - 88 Note générale : bibliographie Langues : Français (fre) Résumé : (auteur) Friedrich Robert Helmert (1843-1917) defined geodesy as the science “of measurements and mappings of the Earth’s surface”. Over time, this definition of geodesy has been extended, mainly as a consequence of technological developments allowing geodesy to observe the Earth on global scales with high accuracy. Today, geodesy is the science of determining the geometry, gravity field, and rotation of the Earth and their evolution in time. This understanding of modern geodesy has led to the definition of the “three pillars of geodesy”, namely (1) Geokinematics, (2) Earth Rotation and (3) the Gravity Field (see Figure 1.1 on page 4). These three pillars are intrinsically linked to each other, and they jointly change as a consequence of dynamical processes in the Earth system as a whole. Numéro de notice : H2008-003 Affiliation des auteurs : LAREG+Ext (1991-2011) Nature : Chapître / contribution DOI : 10.1007/978-3-642-02687-4_2 Date de publication en ligne : 01/01/2009 En ligne : https://doi.org/10.1007/978-3-642-02687-4_2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102419 A simulation study of the errors of omission and commission for GRACE RL01 gravity fields / B. Gunter in Journal of geodesy, vol 80 n° 7 (October 2006)PermalinkPrecise orbit determination for the GRACE mission using only GPS data / Z. Kang in Journal of geodesy, vol 80 n° 6 (September 2006)Permalink