Détail de l'auteur
Auteur A.G. Journel |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel method for mapping land cover changes: Incorporating time and space with geostatistics / A. Boucher in IEEE Transactions on geoscience and remote sensing, vol 44 n° 11 Tome 2 (November 2006)
[article]
Titre : A novel method for mapping land cover changes: Incorporating time and space with geostatistics Type de document : Article/Communication Auteurs : A. Boucher, Auteur ; K.C. Seto, Auteur ; A.G. Journel, Auteur Année de publication : 2006 Article en page(s) : pp 3427 - 3435 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification pixellaire
[Termes IGN] détection de changement
[Termes IGN] données de terrain
[Termes IGN] filtre de déchatoiement
[Termes IGN] géostatistique
[Termes IGN] krigeage
[Termes IGN] série temporelle
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Landsat data are now available for more than 30 years, providing the longest high-resolution record of Earth monitoring. This unprecedented time series of satellite imagery allows for extensive temporal observation of terrestrial processes such as land cover and land use change. However, despite this unique opportunity, most existing change detection techniques do not fully capitalize on this long time series. In this paper, a method that exploits both the temporal and spatial domains of time series satellite data to map land cover changes is presented. The time series of each pixel in the image is modeled with a combination of: 1) pixel-specific remotely sensed data; 2) neighboring pixels derived from ground observation data; and 3) time series transition probabilities. The spatial information is modeled with variograms and integrated using indicator kriging; time series transition probabilities are combined using an information-based cascade approach. This results in a map that is significantly more accurate in identifying when, where, and what land cover changes occurred. For the six images used in this paper, the prediction accuracy of the time series improves significantly, increasing from 31% to 61%, when both space and time are considered with the maximum likelihood. The consideration of spatial continuity also reduced unwanted speckles in the classified images, removing the need for any postprocessing. These results indicate that combining space and time domains significantly improves the accuracy of temporal change detection analyses and can produce high-quality time series land cover maps. Copyright IEEE Numéro de notice : A2006-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2006.879113 En ligne : https://doi.org/10.1109/TGRS.2006.879113 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28252
in IEEE Transactions on geoscience and remote sensing > vol 44 n° 11 Tome 2 (November 2006) . - pp 3427 - 3435[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-06111B RAB Revue Centre de documentation En réserve L003 Disponible