Détail de l'autorité
SMI 2018, Shape Modelling International 06/06/2018 08/06/2018 Lisbonne Portugal https://www.sciencedirect.com/journal/computers-and-graphics/special-issue/10RZ9DXPNK4
nom du congrès :
SMI 2018, Shape Modelling International
début du congrès :
06/06/2018
fin du congrès :
08/06/2018
ville du congrès :
Lisbonne
pays du congrès :
Portugal
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF / Jules Morel in Computers and graphics, vol 74 (August 2018)
[article]
Titre : Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF Type de document : Article/Communication Auteurs : Jules Morel, Auteur ; Alexandra Bac, Auteur ; Cédric Vega , Auteur Année de publication : 2018 Projets : DIABOLO / Packalen, Tuula Conférence : SMI 2018, Shape Modelling International 06/06/2018 08/06/2018 Lisbonne Portugal https://www.sciencedirect.com/journal/computers-and-graphics/special-issue/10RZ9DXPNK4 Article en page(s) : pp 44 - 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] approximation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] équation de Poisson
[Termes IGN] fonction de base radiale
[Termes IGN] jeu de données localisées
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de pointsRésumé : (auteur) This paper introduces a novel surface reconstruction method based on unorganized point clouds, which focuses on offering complete and closed mesh models of partially sampled object surfaces. To accomplish this task, our approach builds upon a known a priori model that coarsely describes the scanned object to guide the modeling of the shape based on heavily occluded point clouds. In the region of space visible to the scanner, we retrieve the surface by following the resolution of a Poisson problem: the surface is modeled as the zero level-set of an implicit function whose gradient is the closest to the vector field induced by the 3D sample normals. In the occluded region of space, we consider the a priori model as a sufficiently accurate descriptor of the shape. Both models, which are expressed in the same basis of compactly supported radial functions to ensure computation and memory efficiency, are then blended to obtain a closed model of the scanned object. Our method is finally tested on traditional testing datasets to assess its accuracy and on simulated terrestrial LiDAR scanning (TLS) point clouds of trees to assess its ability to handle complex shapes with occlusions. Numéro de notice : A2018-530 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cag.2018.05.004 Date de publication en ligne : 17/05/2018 En ligne : https://doi.org/10.1016/j.cag.2018.05.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91400
in Computers and graphics > vol 74 (August 2018) . - pp 44 - 55[article]