Titre : |
Vers une occupation du sol France entière par imagerie satellite à très haute résolution |
Type de document : |
Thèse/HDR |
Auteurs : |
Tristan Postadjian , Auteur ; Clément Mallet , Directeur de thèse ; Arnaud Le Bris , Encadrant ; Hichem Sahbi, Encadrant |
Editeur : |
Champs-sur-Marne [France] : Université Gustave Eiffel |
Année de publication : |
2020 |
Importance : |
169 p. |
Format : |
21 x 30 cm |
Note générale : |
Bibliographie
Thèse présentée pour l'obtention du titre de Docteur de l'Université Paris-Est, spécialité : Mathématiques, Sciences et Technologies de l'Information et de la Communication |
Langues : |
Français (fre) |
Descripteur : |
[Vedettes matières IGN] Traitement d'image optique [Termes IGN] apprentissage profond [Termes IGN] base de données localisées IGN [Termes IGN] carte d'occupation du sol [Termes IGN] classification automatique [Termes IGN] classification par séparateurs à vaste marge [Termes IGN] image à très haute résolution [Termes IGN] image SPOT 6 [Termes IGN] image SPOT 7 [Termes IGN] mise à jour de base de données [Termes IGN] occupation du sol [Termes IGN] OCS GE
|
Index. décimale : |
THESE Thèses et HDR |
Résumé : |
(auteur) La connaissance de la couverture des territoires en terme d’occupation des sols est devenue un enjeu majeur du XXIème siècle. Que ce soit à l’échelle nationale ou à une échelle plus globale, les initiatives se multiplient pour proposer des cartographies d’occupation des sols qui répondent à des besoins propres à chacune. Consistant à classer des objets présents sur le sol selon des nomenclatures prédéfinies, la tâche est fastidieuse à l’heure actuelle avec des processus essentiellement manuels ou semi-manuels, nécessaires pour garantir le respect de certaines qualités et spécifications. De son côté, la télédétection spatiale a connu un essor conséquent avec la multiplication des capteurs optiques d’observation de la Terre disponibles et de leur diversité en terme de résolutions spectrale, spatiale et temporelle. Ces capteurs optiques proposent chacun une description de la surface terrestre qui leur est propre, et donc caractérisant un ou plusieurs type(s) d’occupation(s) des sols. Ces types dépendent justement des caractéristiques de ces capteurs, caractéristiques adaptées davantage à l’observation des glaciers, des forêts ou des zones plus urbaines par exemple. Les satellites SPOT 6 et SPOT 7, lancés en 2012 et 2014 respectivement, sont dotés de capteurs optiques à très haute résolution spatiale, et acquièrent des images dans quatre bandes spectrales à haute résolution ainsi qu’une bande panchromatique à très haute résolution, permettant de porter la résolution des quatre canaux spectraux à 1,5 m. L’IGN, à partir de ces acquisitions SPOT disponibles sur le pôle de données surfaces continentales THEIA, produit chaque année une couverture d’orthophotos sur l’ensemble du territoire français. Il apparaît dès lors intéressant d’exploiter cette couverture pour générer une OCS millésimée. La problématique de cartographie de l’occupation des sols automatique à partir d’images aériennes ou satellites occupe la communauté de télédétection depuis longtemps, par le biais de processus de classification supervisés, tels que les SVMs, ou les forêts aléatoires pour, entre autres, la vitesse d’exécution de ces derniers. Mais les résultats obtenus par ces méthodes n’ont pas encore permis une réelle automatisation, notamment en adéquation avec des spécifications existantes (erreurs encore trop importantes). En parallèle de ces algorithmes depuis longtemps utilisés, des méthodes d’apprentissage automatique d’un genre nouveau, bien que reposant sur des concepts remontant aux années 1950, émergent depuis une décennie et sont étroitement liés aux recherches menées en machine learning. L’apprentissage profond, dont il est question ici, a fait ses preuves dans de nombreux domaines depuis le traitement naturel du langage, à la reconnaissance d’objets dans des images. Cet essor récent est la conséquence de la disponibilité de grandes bases de données d’apprentissage, ainsi que la démocratisation de l’utilisation de GPUs et de l’accroissement général des puissances de calcul. Représentants principaux de cette famille d’apprentissage, les réseaux de neurones profonds ont réellement bouleversé le monde actuel au quotidien. Que ce soit au niveau académique en terme de recherche, au niveau sociétal, au travers des smartphones par exemple (reconnaissances vocale, faciale, systèmes de recommandation), ou même au niveau politique, avec les questions déontologiques que cela peut poser en terme de confidentialité des données (RGPD) et de protection des libertés individuelles, l’apprentissage profond est au cœur de technologies utilisées par la plupart des gens, de manière transparente et donc sans que ceux-ci s’en aperçoivent. En effet, pour afficher de telles performances dans tant de domaines, l’inconvénient pratique est le besoin très massif de données d’apprentissage lorsque l’on manipule ces algorithmes. Les bases de données géographiques de l’IGN sont donc une opportunité dans notre cas, permettant d’exploiter au mieux les images très haute résolution monoscopiques acquises par les satellites SPOT 6 et 7 en les classifiant automatiquement par réseaux de neurones profonds appris sur ces mêmes bases de données. C’est cette approche que nous proposons dans ces travaux de thèse, avec une volonté d’étudier cette problématique tout en se plaçant dans un cadre plus large à visée opérationnelle, afin de proposer des cartographies sur de grandes étendues géographiques. Les expérimentations menées répondent aux questions soulevées lorsque l’on cherche à classifier de grandes zones : par exemple, la couverture annuelle SPOT produite par l’IGN étant unique, deux images adjacentes de cette couverture peuvent avoir été acquises à des époques différentes. Également, nous étudions les possibilités de transfert d’apprentissage par fine-tuning qui offre beaucoup d’avantages en matière de charges de calcul et de jeu d’apprentissage. Enfin, dans un contexte de mise à jour automatique de bases de données géographiques, l’exploitation jointe d’images aériennes et de réseaux de neurones profonds est étudiée, avec un accent mis sur la préparation des données d’apprentissage issues des bases de données géographiques de l’IGN qui présentent certains inconvénients. |
Note de contenu : |
1- Introduction
2- Etat de l'art
3- Apprentissage profond sur images satellites très haute résolution
4- Mettre à jour des bases de données d'OCS
5- Conclusion et perspectives |
Numéro de notice : |
25964 |
Affiliation des auteurs : |
UGE-LASTIG (2020- ) |
Thématique : |
FORET/IMAGERIE/INFORMATIQUE |
Nature : |
Thèse française |
Note de thèse : |
Thèse de Doctorat : Informatique : Paris-Est : 2020 |
Organisme de stage : |
LaSTIG (IGN) |
nature-HAL : |
Thèse |
DOI : |
sans |
Date de publication en ligne : |
08/12/2020 |
En ligne : |
https://theses.hal.science/tel-03045637 |
Format de la ressource électronique : |
URL |
Permalink : |
https://documentation.ensg.eu/index.php?lvl=notice_display&id=96546 |
| |