Détail de l'auteur
Auteur M.V. Tinin |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Eliminating diffraction effects during multi-frequency correction in global navigation satellite systems / M.V. Tinin in Journal of geodesy, vol 89 n° 5 (May 2015)
[article]
Titre : Eliminating diffraction effects during multi-frequency correction in global navigation satellite systems Type de document : Article/Communication Auteurs : M.V. Tinin, Auteur Année de publication : 2015 Article en page(s) : pp 491 - 503 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] correction du signal
[Termes IGN] correction ionosphérique
[Termes IGN] diffraction
[Termes IGN] positionnement par GPS
[Termes IGN] résidu
[Termes IGN] signal GNSS
[Termes IGN] signal multidimensionnelRésumé : (auteur) In the geometrical optics approximation, the ionospheric part of error in measuring phase and code delays of the satellite signal may be represented as a rapidly decreasing series in inverse power of frequency. Such a simple frequency dependence allows us to use multi-frequency measurements for eliminating the error in such multi-frequency Global Navigation Satellite Systems as GPS, GLONASS, BeiDou, and Galileo. However, the elimination of errors is handicapped by diffraction effects during signal propagation through turbulent ionospheric plasma. The numerical simulation has shown that when using the spatial processing in the form of Fresnel inversion the transition from dual-frequency to triple-frequency measurements reduces the average error of measurement. Yet fluctuations of the error diminish only if the inner scale exceeds the Fresnel radius. In the opposite case of excess of the Fresnel radius over the inner scale, the random component of the residual error is growing during the transition to triple-frequency measurements. The numerical simulation results also suggest that the Fresnel spatial processing in dual-frequency measurements at the optimal distance to the virtual screen can reduce the average error from centimeter to submillimeter level, which renders the transition to triple-frequency measurements unnecessary. The study of the residual error dependence on the distance from the virtual screen to the observer has revealed that the optimum value of this distance may be found from the minimum condition of amplitude scintillation index of the processed signal. The signal thus processed may be utilized both in geodetic precise measurements and in diagnostics of the lower atmosphere. Numéro de notice : A2015-349 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0794-4 En ligne : https://doi.org/10.1007/s00190-015-0794-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76723
in Journal of geodesy > vol 89 n° 5 (May 2015) . - pp 491 - 503[article]Contribution of ionospheric irregularities to the error of dual-frequency GNSS positioning / B.C. Kim in Journal of geodesy, vol 81 n° 3 (March 2007)
[article]
Titre : Contribution of ionospheric irregularities to the error of dual-frequency GNSS positioning Type de document : Article/Communication Auteurs : B.C. Kim, Auteur ; M.V. Tinin, Auteur Année de publication : 2007 Article en page(s) : pp 189 - 199 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] positionnement par GPS
[Termes IGN] propagation ionosphérique
[Termes IGN] récepteur bifréquence
[Termes IGN] résiduRésumé : (Auteur) This paper investigates the third-order residual range error in the dual-frequency correction of ionospheric effects on satellite navigation. We solve the two-point trajectory problem using the perturbation method to derive second-approximation formulas for the phase path of the wave propagating through an inhomogeneous ionosphere. It is shown that these formulas are consistent with the results derived from applying perturbation theory directly to the eikonal equation. The resulting expression for the phase path is used in calculating the residual range error of dual-frequency global positioning system (GPS) observations, in view of second- and third-order terms. The third-order correction includes not only the quadratic correction of the refractive index but also the correction for ray bending in an inhomogeneous ionosphere. Our calculations took into consideration that the ionosphere has regular large-scale irregularities, as well as smaller-scale random irregularities. Numerical examples show that geomagnetic field effects, which constitute a second-order correction, typically exceed the effects of the quadratic correction and the regular ionospheric inhomogeneity. The contribution from random irregularities can compare with or exceed that made by the second-order correction. Therefore, random ionospheric irregularities can make a significant (sometimes dominant) contribution to the residual range error. Copyright Springer Numéro de notice : A2007-183 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-006-0099-8 En ligne : https://doi.org/10.1007/s00190-006-0099-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28546
in Journal of geodesy > vol 81 n° 3 (March 2007) . - pp 189 - 199[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 266-07031 RAB Revue Centre de documentation En réserve L003 Disponible 266-07032 RAB Revue Centre de documentation En réserve L003 Disponible