Détail de l'auteur
Auteur N. Jakowski |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications / M.M. Hoque in GPS solutions, vol 21 n° 4 (October 2017)
[article]
Titre : Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications Type de document : Article/Communication Auteurs : M.M. Hoque, Auteur ; N. Jakowski, Auteur ; J. Berdermann, Auteur Année de publication : 2017 Article en page(s) : pp 1563 - 1572 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] atténuation du signal
[Termes IGN] correction ionosphérique
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur monofréquence
[Termes IGN] teneur totale en électronsRésumé : (Auteur) Global Navigation Satellite Systems (GNSS) require mitigation of ionospheric propagation errors because the ionospheric range errors might be larger than tens of meters at the zenith direction. Taking advantage of the frequency-dispersive property of ionospheric refractivity, the ionospheric range errors can be mitigated in dual-frequency applications to a great extent by a linear combination of carrier phases or pseudoranges. However, single-frequency GNSS operations require additional ionospheric information to apply signal delay or range error corrections. To aid single-frequency operations, the global positioning system (GPS) broadcasts 8 coefficients as part of the navigation message to drive the ionospheric correction algorithm (ICA) also known as Klobuchar model. We presented here an ionospheric correction algorithm called Neustrelitz TEC model (NTCM) which can be used as complementary to the GPS ICA. Our investigation shows that the NTCM can be driven by Klobuchar model parameters to achieve a significantly better performance than obtained by the mother ICA algorithm. Our research, using post-processed reference total electron content (TEC) data from more than one solar cycle, shows that on average the RMS modeled TEC errors are up to 40% less for the proposed NTCM model compared to the Klobuchar model during high solar activity period, and about 10% less during low solar activity period. Such an approach does not require major technology changes for GPS users rather requires only introducing the NTCM approach a complement to the existing ICA algorithm while maintaining the simplicity of ionospheric range error mitigation with an improved model performance. Numéro de notice : A2017-616 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-017-0632-7 En ligne : https://doi.org/10.1007/s10291-017-0632-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86926
in GPS solutions > vol 21 n° 4 (October 2017) . - pp 1563 - 1572[article]Higher order ionospheric effects in precise GNSS positioning / M. Mainul Hoque in Journal of geodesy, vol 81 n° 4 (April 2007)
[article]
Titre : Higher order ionospheric effects in precise GNSS positioning Type de document : Article/Communication Auteurs : M. Mainul Hoque, Auteur ; N. Jakowski, Auteur Année de publication : 2007 Article en page(s) : pp 259 - 268 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] phase GPS
[Termes IGN] positionnement par GNSS
[Termes IGN] réfraction atmosphérique
[Termes IGN] résidu
[Termes IGN] teneur totale en électronsRésumé : (Auteur) With the increasing number of precise navigation and positioning applications using Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS), higher order ionospheric effects and their correction become more and more important. Whereas the first-order error can be completely eliminated by a linear combination of dual- frequency measurements, the second- and third-order residual effects remain uncorrected in this approach. To quantify the second-order residual effect, a simple formula has been derived for GNSS users in Germany. Our proposed correction algorithm reduces the second-order effects to a residual error of fractions of 1 mm up to 2 mm at a vertical total electron content level of 1018 electrons/m (100 TECU), depending on satellite azimuth and elevation angles. The correction formula can be implemented in real-time applications as it does not require the knowledge of the geomagnetic field or the electron density distribution in the ionosphere along the signal path. It is expected that the correction will enable more accurate positioning using the line-of-sight carrier-phase measurements. Copyright Springer Numéro de notice : A2007-186 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-006-0106-0 En ligne : https://doi.org/10.1007/s00190-006-0106-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28549
in Journal of geodesy > vol 81 n° 4 (April 2007) . - pp 259 - 268[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 266-07041 RAB Revue Centre de documentation En réserve L003 Disponible 266-07042 RAB Revue Centre de documentation En réserve L003 Disponible