Détail de l'auteur
Auteur F. Suppan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The impact of relative radiometric calibration on the accuracy of kNN-predictions of forest attributes / T. Koukal in Remote sensing of environment, vol 110 n° 4 (30/10/2007)
[article]
Titre : The impact of relative radiometric calibration on the accuracy of kNN-predictions of forest attributes Type de document : Article/Communication Auteurs : T. Koukal, Auteur ; F. Suppan, Auteur ; W. Schneider, Auteur Année de publication : 2007 Conférence : ForestSat 2007, forests and remote sensing : methods and operational tools 05/11/2007 07/11/2007 Montpellier France Article en page(s) : pp 431 - 437 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Autriche
[Termes IGN] classification barycentrique
[Termes IGN] étalonnage radiométrique
[Termes IGN] forêt
[Termes IGN] image Landsat-TM
[Termes IGN] point d'appui
[Termes IGN] régression linéaireRésumé : (Auteur) The k-nearest-neighbour (kNN) algorithm is widely applied for the estimation of forest attributes using remote sensing data. It requires a large amount of reference data to achieve satisfactory results. Usually, the number of available reference plots for the kNN-prediction is limited by the size of the area covered by a terrestrial reference inventory and remotely sensed imagery collected from one overflight. The applicability of kNN could be enhanced if adjacent images of different acquisition dates could be used in the same estimation procedure. Relative radiometric calibration is a prerequisite for this. This study focuses on two empirical calibration methods. They are tested on adjacent LANDSAT TM scenes in Austria. The first, quite conventional one is based on radiometric control points in the overlap area of two images and on the determination of transformation parameters by linear regression. The other, recently developed method exploits the kNN-cross-validation procedure. Performance and applicability of both methods as well as the impact of phenology are discussed. Copyright Elsevier Numéro de notice : A2007-411 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2006.08.016 En ligne : https://doi.org/10.1016/j.rse.2006.08.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28774
in Remote sensing of environment > vol 110 n° 4 (30/10/2007) . - pp 431 - 437[article]