Détail de l'auteur
Auteur D. Rokos |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Potentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes / Konstantinos Topouzelis in Geocarto international, vol 24 n° 3 (June - July 2009)
[article]
Titre : Potentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes Type de document : Article/Communication Auteurs : Konstantinos Topouzelis, Auteur ; V. Karathanassi, Auteur ; P. Pavlaskis, Auteur ; D. Rokos, Auteur Année de publication : 2009 Article en page(s) : pp 179 - 191 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection
[Termes IGN] fonction de base radiale
[Termes IGN] hydrocarbure
[Termes IGN] image radar
[Termes IGN] marée noire
[Termes IGN] Perceptron multicouche
[Termes IGN] pollution des mers
[Termes IGN] rétrodiffusionRésumé : (Auteur) Radar backscatter values from oil spills are very similar to backscatter values from very calm sea areas and other ocean phenomena. Several studies aiming at oil spill detection have been conducted. Most of these studies rely on the detection of dark areas, which have high Bayesian probability of being oil spills. The drawback of these methods is a complex process, mainly because non-linearly separable datasets are introduced in statistically based decisions. The use of neural networks (NNs) in remote sensing has increased significantly, as NNs can simultaneously handle non-linear data of a multidimensional input space. In this article, we investigate the ability of two commonly used feed-forward NN models: multilayer perceptron (MLP) and radial basis function (RBF) networks, to classify dark formations in oil spills and look-alike phenomena. The appropriate training algorithm, type and architecture of the optimum network are subjects of research. Inputs to the networks are the original synthetic aperture radar image and other images derived from it. MLP networks are recognized as more suitable for oil spill detection. Numéro de notice : A2009-186 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106040802488526 Date de publication en ligne : 19/05/2009 En ligne : https://doi.org/10.1080/10106040802488526 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29816
in Geocarto international > vol 24 n° 3 (June - July 2009) . - pp 179 - 191[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-09031 RAB Revue Centre de documentation En réserve L003 Disponible Detection and discrimination between oil spills and look-alike phenomena through neural networks / Konstantinos Topouzelis in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 4 (September 2007)
[article]
Titre : Detection and discrimination between oil spills and look-alike phenomena through neural networks Type de document : Article/Communication Auteurs : Konstantinos Topouzelis, Auteur ; V. Karathanassi, Auteur ; P. Pavlakis, Auteur ; D. Rokos, Auteur Année de publication : 2007 Article en page(s) : pp 264 - 270 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse discriminante
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection automatique
[Termes IGN] image radar moirée
[Termes IGN] marée noire
[Termes IGN] radargrammétrieRésumé : (Auteur) Synthetic Aperture Radar (SAR) images are extensively used for dark formation detection in the marine environment, as their recording is independent of clouds and weather. Dark formations can be caused by man made actions (e.g. oil spill discharging) or natural ocean phenomena (e.g. natural slicks, wind front areas). Radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean phenomena because they damp the capillary and short gravity sea waves. The ability of neural networks to detect dark formations in high resolution SAR images and to discriminate oil spills from look-alike phenomena simultaneously was examined. Two different neural networks are used; one to detect dark formations and the second one to perform a classification to oil spills or look-alikes. The proposed method is very promising in detecting dark formations and discriminating oil spills from look-alikes as it detects with an overall accuracy of 94% the dark formations and discriminate correctly 89% of examined cases. Numéro de notice : A2007-428 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2007.05.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2007.05.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28791
in ISPRS Journal of photogrammetry and remote sensing > vol 62 n° 4 (September 2007) . - pp 264 - 270[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-07061 SL Revue Centre de documentation Revues en salle Disponible