Détail de l'auteur
Auteur K. Omasa |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimation of vegetation parameter for modelling soil erosion using linear spectral mixture analysis of Landsat ETM data / A.M. DE Asis in ISPRS Journal of photogrammetry and remote sensing, vol 62 n° 4 (September 2007)
[article]
Titre : Estimation of vegetation parameter for modelling soil erosion using linear spectral mixture analysis of Landsat ETM data Type de document : Article/Communication Auteurs : A.M. DE Asis, Auteur ; K. Omasa, Auteur Année de publication : 2007 Article en page(s) : pp 309 - 324 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] classification pixellaire
[Termes IGN] couvert végétal
[Termes IGN] données de terrain
[Termes IGN] érosion
[Termes IGN] estimation statistique
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Quickbird
[Termes IGN] modèle physique
[Termes IGN] modèle RUSLERésumé : (Auteur) Soil conservation planning often requires estimates of soil erosion at a catchment or regional scale. Predictive models such as Universal Soil Loss Equation (USLE) and its subsequent Revised Universal Soil Loss Equation (RUSLE) are useful tools to generate the quantitative estimates necessary for designing sound conservation measures. However, large-scale soil erosion model-factor parameterization and quantification is difficult due to the costs, labor and time involved. Among the soil erosion parameters, the vegetative cover or C factor has been one of the most difficult to estimate over broad geographic areas. The C factor represents the effects of vegetation canopy and ground covers in reducing soil loss. Traditional methods for the extraction of vegetation information from remote sensing data such as classification techniques and vegetation indices were found to be inaccurate. Thus, this study presents a new approach based on Spectral Mixture Analysis (SMA) of Landsat ETM data to map the C factor for use in the modeling of soil erosion. A desirable feature of SMA is that it estimates the fractional abundance of ground cover and bare soils simultaneously, which is appropriate for soil erosion analysis. Hence, we estimated the C factor by utilizing the results of SMA on a pixel-by-pixel basis. We specifically used a linear SMA (LSMA) model and performed a minimum noise fraction (MNF) transformation and pixel purity index (PPI) on Landsat ETM image to derive the proportion of ground cover (vegetation and non-photosynthetic materials) and bare soil within a pixel. The end-members were selected based on the purest pixels found using PPI with reference to very high-resolution QuickBird image and actual field data. Results showed that the C factor value estimated using LSMA correlated strongly with the values measured in the field. The correlation coefficient (r) obtained was 0.94. A comparative analysis between NDVI- and LSMA-derived C factors also proved that the latter produced a more detailed spatial variability, as well as generated more accurate erosion estimates when used as input to RUSLE model. The QuickBird image coupled with field data was used in the validation of results. Copyright ISPRS Numéro de notice : A2007-430 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2007.05.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2007.05.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28793
in ISPRS Journal of photogrammetry and remote sensing > vol 62 n° 4 (September 2007) . - pp 309 - 324[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-07061 SL Revue Centre de documentation Revues en salle Disponible