Détail de l'auteur
Auteur Kenji Ose |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Products and services of the Urban THEIA Scientific Expertise Centre Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Thibault Catry, Auteur ; Rémi Cresson, Auteur ; Nadine Dessay, Auteur ; Laurent Demagistri, Auteur ; Sébastien Gadal, Auteur ; Arnaud Le Bris , Auteur ; Kenji Ose, Auteur ; Benjamin Pillot, Auteur Editeur : Strasbourg : Université de Strasbourg Année de publication : 2022 Conférence : LPS 2022, ESA Living Planet Symposium 22/05/2022 27/05/2022 Bonn Allemagne programme sans actes Note générale : projet AIMCEE (Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains) Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données spatiotemporelles
[Termes IGN] image satelliteRésumé : (auteur) The THEIA data and services centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRA, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA was initiated in 2012 with the objective of increasing the use of space data by the scientific community and the public actors. The first years allowed structuring the national science and user communities, pooling resources to facilitate access to data and processing capacities, federating various previously unrelated initiatives, and disseminating the French achievements nationally and internationally.
The THEIA Land Data and Services Centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRAE, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA has been initiated with the objective of increasing the use of space data by the scientific community and the public actors. The Scientific Expertise Centers (SEC) cluster research groups on various thematic domains. The "Urban” SEC gathers experts in multi-sensor urban remote sensing. Researchers of this group have structured their works around the development of algorithms useful for urban remote sensing using optical and SAR sensors to propose “urban products” at three different spatial scales: (1) the urban footprint, (2) the urban fabrics and (3) the urban objects. The objective of this poster is to present recent (>2019) advances of the URBAN SEC at these three scales. For the first two, the proposed methods are adapted to the geographic context of urban cities (West Cities, South Cities first and North Cities). For each spatial scale, the objective is to propose validated scientific products already available or in the near-term through the THEIA Land Service and Data Infrastructure.
At the macro-scale (urban footprint), an unsupervised automated approach is currently under development at Espace-DEV - Montpellier, and funded by a CNES project (TOSCA DELICIOSA). This method is derived from the FOTO algorithm originally developed to differentiate vegetation textures in HR and VHR satellite images (Couteron et al. 2006, Lang et al., 2019). It has been optimized and packaged into the FOTOTEX Python Open-Source library. The method is very well suited for areas with no or few urban settlement data or with quickly growing informal settlements. No training dataset is required, and the urban footprint can be identified from only one satellite image as long as it is not covered by clouds. For Western Cities where training datasets are available, the Urba-Opt processing chain based on an automatic and object-oriented approach has been deployed on HPC infrastructure and produce annually (since 2018) an urban settlement product which is available through the A2S dissemination infrastructure and on the Urban SEC of Theia land data and service Infrastructure. An ongoing research between LIVE and Espace Dev Labs focused on the interest to use the FOTOTEX result as training data in the Urba-Opt processing chain to propose an updated product of urban settlement for South cities.
At the scales of urban fabrics, products are under research activities The LIVE lab. In the context of an ongoing PhD thesis (ANR TIMES) and Tosca project (CNES 2019-2022) Sentinel-2 single-date images are used to assess two semantic segmentation networks (U-Net) that we combined using feature fusion between a from scratch network and a pre-trained network on ImageNet. Three spectral or textural indices have been added to the both networks in order to improve the classification results. The results showed a performance gain for the fusion methods. The research activities are ongoing in order to test the S1 imagery and temporal series for training in a deep architecture.
The IGN-LaSTIG - Univ. Paris Est has focused on the use of Sentinel-2 and VHR mono-temporal SPOT products to retrieve land cover information related to urban density. First, images undergo a U-net based semantic segmentation at urban object level to retrieve ‘topographic’ classes (buildings, roads, vegetation, …). Generalized information about urban fabrics is then derived out of these land cover maps thanks to another CNN architecture. Both a building density measure and a simplified Urban Atlas like land cover map are calculated. The UMR ESPACE has focused on the machine learning modeling of the evolution of urban territories of Arctic (Yakutsk) and North-Eastern Europe (Baltic States and Kaliningrad) cities since the post-Soviet period at two scales: those of the built-up area with high spatial resolution SPOT 6/7 images, and of the urban structures based on the use of Landsat 5 TM, Landsat 8 OLI, and Sentinel 2 MSI images. Environmental (urban vegetation), economic (agricultural transformation), and morphometric indexes have been developed to characterize the processes of urban restructuring (densification, renovation) and expansion of post-Soviet cities. A comparative analysis of the machine learning algorithms used was done on the South-East Baltic cities to evaluate their performance.
At the scale of urban object (3), a map of building with their functions is proposed by the TETIS laboratory. The study targets the retrieval of buildings footprint using deep convolutional neural networks for semantic segmentation, from Spot-6/7 images (1,5m spacing), on the entire France mainland. A single model has been trained and validated from 1.2k Spot-6/7 scenes and 20M images patches. The LIVE Lab has focused on the detection of urban changes from tri-stereoscopic Pléiades imagery through 2017 to 2020. A processing chain based on a Random Forest classifiers (ImCLASS) has been tested and the impact of the height attribute to detect changes has been evaluated to characterize changes into three thematic classes of changes.Numéro de notice : C2022-016 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Poster nature-HAL : Poster-avec-CL DOI : sans En ligne : https://express.converia.de/frontend/index.php?page_id=22745&additions_conferenc [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100842 Documents numériques
peut être téléchargé
Products and services of the Urban THEIA Scientific Expertise Centre - posterAdobe Acrobat PDF DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn / Roberto Interdonato in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn Type de document : Article/Communication Auteurs : Roberto Interdonato, Auteur ; Dino Ienco, Auteur ; Raffaele Gaetano, Auteur ; Kenji Ose, Auteur Année de publication : 2019 Article en page(s) : pp 91 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelleRésumé : (Auteur) Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-115 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.011 Date de publication en ligne : 24/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92441
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 91 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Analyse spatio-temporelle de l'occupation du sol dans le parc national de Waza entre 1986 et 2001 (Nord Cameroun) / G. Wafo Tabopda in Revue Française de Photogrammétrie et de Télédétection, n° 189 (Mars 2008)
[article]
Titre : Analyse spatio-temporelle de l'occupation du sol dans le parc national de Waza entre 1986 et 2001 (Nord Cameroun) Type de document : Article/Communication Auteurs : G. Wafo Tabopda, Auteur ; Kenji Ose, Auteur ; J.M. Fotsing, Auteur Année de publication : 2008 Article en page(s) : pp 40 - 50 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aire protégée
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Cameroun
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] couvert végétal
[Termes IGN] écosystème
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] occupation du sol
[Termes IGN] parc naturel national
[Termes IGN] savane
[Termes IGN] zone humideRésumé : (Auteur) Le parc national de Waza joue un rôle important dans le maintien des ressources du Nord Cameroun. Cependant, les crises climatiques des années 1970 et la construction du barrage de Maga en 1979 ont provoqué l'assèchement de son réseau hydrographique. Pour réhabiliter son écosystème, le Projet Waza-Logone a été initié au début des années 1990. L'analyse spatio-temporelle de deux images Landsat TM et ETM+ de 1986 et 2001, permet de mettre en évidence les états successifs du couvert végétal ainsi que l'évaluation de sa dynamique dans cette aire protégée du Nord Cameroun. Le couvert végétal connaît une évolution de 52 % entre les deux dates. Cependant, l'analyse des résultats et les requêtes effectuées dans le SIG, autorisent l'identification d'un gradient de déforestation qui révèle les limites des actions concertées et la pression sous-jacente des activités rurales sur les ressources végétales. Copyright SFPT Numéro de notice : A2008-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29618
in Revue Française de Photogrammétrie et de Télédétection > n° 189 (Mars 2008) . - pp 40 - 50[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 018-08011 RAB Revue Centre de documentation En réserve L003 Disponible IFN-001-P000586 PER Revue Nogent-sur-Vernisson Salle périodiques Disponible