Détail de l'auteur
Auteur N. Tselfes |
Documents disponibles écrits par cet auteur (2)



Geoid and high resolution sea surface topography modelling in the mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation / R. Barzaghi in Journal of geodesy, vol 83 n° 8 (August 2009)
![]()
[article]
Titre : Geoid and high resolution sea surface topography modelling in the mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation Type de document : Article/Communication Auteurs : R. Barzaghi, Auteur ; N. Tselfes, Auteur ; I.N. Tziavos, Auteur ; G. Vergos, Auteur Année de publication : 2009 Article en page(s) : pp 751 - 772 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données altimétriques
[Termes IGN] données GOCE
[Termes IGN] géoïde local
[Termes IGN] hauteurs de mer
[Termes IGN] levé gravimétrique
[Termes IGN] Méditerranée, mer
[Termes IGN] surface de la merRésumé : (Auteur) The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods. Copyright Springer Numéro de notice : A2009-325 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-008-0292-z En ligne : https://doi.org/10.1007/s00190-008-0292-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29955
in Journal of geodesy > vol 83 n° 8 (August 2009) . - pp 751 - 772[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 266-09071 SL Revue Centre de documentation Revues en salle Disponible Optima multi-step collocation: application to the space-wise approach for GOCE data analysis / M. Reguzzoni in Journal of geodesy, vol 83 n° 1 (January 2009)
![]()
[article]
Titre : Optima multi-step collocation: application to the space-wise approach for GOCE data analysis Type de document : Article/Communication Auteurs : M. Reguzzoni, Auteur ; N. Tselfes, Auteur Année de publication : 2009 Article en page(s) : pp 13 - 29 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse harmonique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] coefficient de géopotentiel
[Termes IGN] collocation
[Termes IGN] GOCE
[Termes IGN] harmonique sphérique
[Termes IGN] levé gravimétriqueRésumé : (Auteur) Collocation is widely used in physical geodesy. Its application requires to solve systems with a dimension equal to the number of observations, causing numerical problems when many observations are available. To overcome this drawback, tailored step-wise techniques are usually applied. An example of these step-wise techniques is the space-wise approach to the GOCE mission data processing. The original idea of this approach was to implement a two-step procedure, which consists of first predicting gridded values at satellite altitude by collocation and then deriving the geo-potential spherical harmonic coefficients by numerical integration. The idea was generalized to a multi-step iterative procedure by introducing a time-wise Wiener filter to reduce the highly correlated observation noise. Recent studies have shown how to optimize the original two-step procedure, while the theoretical optimization of the full multi-step procedure is investigated in this work. An iterative operator is derived so that the final estimated spherical harmonic coefficients are optimal with respect to the Wiener–Kolmogorov principle, as if they were estimated by a direct collocation. The logical scheme used to derive this optimal operator can be applied not only in the case of the space-wise approach but, in general, for any case of step-wise collocation. Several numerical tests based on simulated realistic GOCE data are performed. The results show that adding a pre-processing time-wise filter to the two-step procedure of data gridding and spherical harmonic analysis is useful, in the sense that the accuracy of the estimated geo-potential coefficients is improved. This happens because, in its practical implementation, the gridding is made by collocation over local patches of data, while the observation noise has a time-correlation so long that it cannot be treated inside the patch size. Therefore, the multi-step operator, which is in theory equivalent to the two-step operator and to the direct collocation, is in practice superior thanks to the time-wise filter that reduces the noise correlation before the gridding. The criteria for the choice of this filter are investigated numerically. Copyright Springer Numéro de notice : A2009-179 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-008-0225-x En ligne : https://doi.org/10.1007/s00190-008-0225-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29809
in Journal of geodesy > vol 83 n° 1 (January 2009) . - pp 13 - 29[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 266-09011 RAB Revue Centre de documentation En réserve L003 Disponible 266-09012 RAB Revue Centre de documentation En réserve L003 Disponible