Détail de l'auteur
Auteur H. Sridharan |
Documents disponibles écrits par cet auteur (1)



Spatial autoregressive model for population estimation at the census block level using lidar-derived building volume information / F. Qiu in Cartography and Geographic Information Science, vol 37 n° 3 (July 2010)
![]()
[article]
Titre : Spatial autoregressive model for population estimation at the census block level using lidar-derived building volume information Type de document : Article/Communication Auteurs : F. Qiu, Auteur ; H. Sridharan, Auteur ; Y. Chun, Auteur Année de publication : 2010 Article en page(s) : pp 239 - 257 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auto-régression
[Termes IGN] bati
[Termes IGN] densité de population
[Termes IGN] données lidar
[Termes IGN] recensement démographiqueRésumé : (Auteur) The collection of population by census is laborious, time consuming and expensive, and often only available at limited temporal and spatial scales. Remote sensing based population estimation has been employed as a viable alternative for providing population estimates based on indicators that make use of two-dimensional areal information of buildings or one-dimensional length information of roads The recent advancement of LIDAR remote sensing provides the opportunity to add the third dimension of height information into the modeling of population distribution. This study explores the use of building volumes derived from LIDAR as a population indicator. Our study shows the volume-based model consistently outperforms area and length-based models at the census block level. Additionally, the study examines the impact of spatial autocorrelation, the presence of which violates the independence assumption of the traditional OLS models. To address this problem, a spatial autoregressive model is employed to account for the spatial autocorrelation in the regression residuals. By incorporating the spatial pattern, the volume-based spatial error model achieves a goodness of fit (R2) of 85 percent, with a significant improvement in model performance and estimation accuracies in comparison with its OLS counterpart. The study confirms building volume as a more valuable indicator and estimator for block level population distribution, especially if an appropriate spatial autoregressive model is adopted. Numéro de notice : A2010-358 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1559/152304010792194949 En ligne : https://doi.org/10.1559/152304010792194949 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30552
in Cartography and Geographic Information Science > vol 37 n° 3 (July 2010) . - pp 239 - 257[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2010031 RAB Revue Centre de documentation En réserve L003 Disponible