Détail de l'auteur
Auteur Franz Rottensteiner |
Documents disponibles écrits par cet auteur (35)



Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
![]()
[article]
Titre : Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes Type de document : Article/Communication Auteurs : Christian Kruse, Auteur ; Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du recuit simulé
[Termes IGN] chevauchement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage de données
[Termes IGN] Europe centrale
[Termes IGN] guerre
[Termes IGN] image aérienne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus ponctuel marqué
[Termes IGN] processus stochastiqueRésumé : (auteur) Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results. Numéro de notice : A2022-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100017 Date de publication en ligne : 02/06/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101057
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022)[article]Cooperative image orientation considering dynamic objects / P. Trusheim in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)
![]()
[article]
Titre : Cooperative image orientation considering dynamic objects Type de document : Article/Communication Auteurs : P. Trusheim, Auteur ; Max Mehltretter, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2022 Article en page(s) : pp 169 - 177 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] compensation par faisceaux
[Termes IGN] orientation d'image
[Termes IGN] point d'appui
[Termes IGN] points homologues
[Termes IGN] réseau neuronal artificiel
[Termes IGN] scène urbaine
[Termes IGN] séquence d'imagesRésumé : (auteur) In the context of image orientation, it is commonly assumed that the environment is completely static. This is why dynamic elements are typically filtered out using robust estimation procedures. Especially in urban areas, however, many such dynamic elements are present in the environment, which leads to a noticeable amount of errors that have to be detected via robust adjustment. This problem is even more evident in the case of cooperative image orientation using dynamic objects as ground control points (GCPs), because such dynamic objects carry the relevant information. One way to deal with this challenge is to detect these dynamic objects prior to the adjustment and to process the related image points separately. To do so, a novel methodology to distinguish dynamic and static image points in stereoscopic image sequences is introduced in this paper, using a neural network for the detection of potentially dynamic objects and additional checks via forward intersection. To investigate the effects of the consideration of dynamic points in the adjustment, an image sequence of an inner-city traffic scenario is used; image orientation, as well as the 3D coordinates of tie points, are calculated via a robust bundle adjustment. It is shown that compared to a solution without considering dynamic points, errors in the tie points are significantly reduced, while the median of the precision of all 3D coordinates of the tie points is improved. Numéro de notice : A2022-441 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-1-2022-169-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-1-2022-169-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100775
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-1-2022 (2022 edition) . - pp 169 - 177[article]Deep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Deep learning for the detection of early signs for forest damage based on satellite imagery Type de document : Article/Communication Auteurs : Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; Mirjana Voelsen, Auteur ; Christian Heipke, Auteur ; Sönke Müller, Auteur Année de publication : 2022 Article en page(s) : pp 307 - 315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dégradation de la flore
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] fonction de perte
[Termes IGN] image Sentinel-MSI
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) We present an approach for detecting early signs for upcoming forest damages by training a Convolutional Neural Network (CNN) for the pixel-wise prediction of the remaining life-time (RLT) of trees in forests based on Sentinel-2 imagery. We focus on a scenario in which reference data are only available for a related task, namely for a bi-temporal pixel-wise classification of forest degradation. This reference is used to train a CNN for the pixel-wise prediction of forest degradation. In this context, we propose a new sub-sampling-based approach for compensating the effects of a heavy class imbalance in the training data. Using the resulting classification model, we predict semi-labels for images of a Sentinel-2 time series, from which training data for a CNN designed to regress the RLT can be derived after some label cleansing. However, due to data gaps in the time series, e.g. caused by clouds, only intervals can be derived for the target variable to be regressed, and for some training pixels one of the interval limits may even be unknown. Consequently, we propose a new loss function for training a CNN for regressing the RLT that only requires the known interval limits. The method is evaluated on a data set in Germany, covering a time-span of 5 years. We show that the proposed sub-sampling strategy for dealing with strong label imbalance when training the classifier significantly reduces the training time compared to other approaches. We further show that our model predicts the RLT with a maximum error of two months for 80% of the forest pixels that die within one year from the acquisition date of the Sentinel-2 image. Numéro de notice : A2022-432 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-307-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-307-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100738
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 307 - 315[article]Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior / Maximilian Alexander Coenen in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior Type de document : Article/Communication Auteurs : Maximilian Alexander Coenen, Auteur ; Franz Rottensteiner, Auteur Année de publication : 2021 Article en page(s) : pp 27 - 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] estimation de pose
[Termes IGN] modèle stochastique
[Termes IGN] problème inverse
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] robotique
[Termes IGN] véhicule automobile
[Termes IGN] vision par ordinateurRésumé : (auteur) The 3D reconstruction of objects is a prerequisite for many highly relevant applications of computer vision such as mobile robotics or autonomous driving. To deal with the inverse problem of reconstructing 3D objects from their 2D projections, a common strategy is to incorporate prior object knowledge into the reconstruction approach by establishing a 3D model and aligning it to the 2D image plane. However, current approaches are limited due to inadequate shape priors and the insufficiency of the derived image observations for a reliable alignment with the 3D model. The goal of this paper is to show how 3D object reconstruction can profit from a more sophisticated shape prior and from a combined incorporation of different observation types inferred from the images. We introduce a subcategory-aware deformable vehicle model that makes use of a prediction of the vehicle type for a more appropriate regularisation of the vehicle shape. A multi-branch CNN is presented to derive predictions of the vehicle type and orientation. This information is also introduced as prior information for model fitting. Furthermore, the CNN extracts vehicle keypoints and wireframes, which are well-suited for model-to-image association and model fitting. The task of pose estimation and reconstruction is addressed by a versatile probabilistic model. Extensive experiments are conducted using two challenging real-world data sets on both of which the benefit of the developed shape prior can be shown. A comparison to state-of-the-art methods for vehicle pose estimation shows that the proposed approach performs on par or better, confirming the suitability of the developed shape prior and probabilistic model for vehicle reconstruction. Numéro de notice : A2021-772 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.006 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98829
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 27 - 47[article]A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases / Chun Yang in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
![]()
[article]
Titre : A hierarchical deep learning framework for the consistent classification of land use objects in geospatial databases Type de document : Article/Communication Auteurs : Chun Yang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2021 Article en page(s) : pp 38 - 56 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] Allemagne
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] classification automatique d'objets
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] jointure
[Termes IGN] objet géographique
[Termes IGN] occupation du sol
[Termes IGN] optimisation (mathématiques)
[Termes IGN] utilisation du solRésumé : (Auteur) Land use as contained in geospatial databases constitutes an essential input for different applications such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural network (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hierarchical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepresented categories, despite their different characteristics. Numéro de notice : A2021-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.022 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97774
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 38 - 56[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Feature detection and description for image matching: from hand-crafted design to deep learning / Lin Chen in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
PermalinkDeep learning for geometric and semantic tasks in photogrammetry and remote sensing / Christian Helpke in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
PermalinkModelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkRobust structure from motion based on relative rotations and tie points / Xin Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 5 (May 2019)
PermalinkStructure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkA higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkIV-1/W1 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1 [30/05/2017]) / Christian Heipke
PermalinkIII-3 - July 2016 - [actes] XXIII ISPRS Congress, Commission III, 12–19 July 2016, Prague, Czech Republic (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Lena Halounova
PermalinkInformation from imagery: ISPRS scientific vision and research agenda / Jun Chen in ISPRS Journal of photogrammetry and remote sensing, vol 115 (May 2016)
PermalinkPermalink