Détail de l'auteur
Auteur Franz Rottensteiner |
Documents disponibles écrits par cet auteur



Deep learning for geometric and semantic tasks in photogrammetry and remote sensing / Christian Helpke in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
![]()
[article]
Titre : Deep learning for geometric and semantic tasks in photogrammetry and remote sensing Type de document : Article/Communication Auteurs : Christian Helpke, Auteur ; Franz Rottensteiner, Auteur Année de publication : 2020 Article en page(s) : pp 10 - 19 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] approche géométrique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] intelligence artificielle
[Termes descripteurs IGN] photogrammétrie numérique
[Termes descripteurs IGN] télédétectionRésumé : (auteur) During the last few years, artificial intelligence based on deep learning, and particularly based on convolutional neural networks, has acted as a game changer in just about all tasks related to photogrammetry and remote sensing. Results have shown partly significant improvements in many projects all across the photogrammetric processing chain from image orientation to surface reconstruction, scene classification as well as change detection, object extraction and object tracking and recognition in image sequences. This paper summarizes the foundations of deep learning for photogrammetry and remote sensing before illustrating, by way of example, different projects being carried out at the Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, in this exciting and fast moving field of research and development. Numéro de notice : A2020-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2020.1718003 date de publication en ligne : 03/02/2020 En ligne : https://doi.org/https://doi.org/10.1080/10095020.2020.1718003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94821
in Geo-spatial Information Science > vol 23 n° 1 (March 2020) . - pp 10 - 19[article]Modelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
![]()
[article]
Titre : Modelling of buildings from aerial LiDAR point clouds using TINs and label maps Type de document : Article/Communication Auteurs : Minglei Li, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 127 - 138 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] modèle numérique du bâti
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] toit
[Termes descripteurs IGN] Triangulated Irregular NetworkRésumé : (Auteur) This paper presents a new framework for automatically creating compact building models from aerial LiDAR point clouds, where each point is known to belong to the class building. The approach addresses the issues of non-uniform point density and outlier detection to extract and refine semantic roof structures by a sequence of operations on a label map. We first partition the points into some coarse regions based on a region growing method over the Triangulated Irregular Network (TIN) model. The region label IDs are then projected to a 2D grid map, which is used to refine the roof regions and their boundaries. We design an energy optimization approach on the label map to optimize the region labels. In order to regularize the contours of roof regions extracted from the label map, we propose a new method for refining contour segment vertices, which iteratively filters the normals of contour segments and uses them to guide the update of contour vertices. The effectiveness of this method is evaluated on LiDAR point clouds from different scenes, and its performance is validated by extensive comparisons to state-of-the-art techniques. Numéro de notice : A2019-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.003 date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93082
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 127 - 138[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Robust structure from motion based on relative rotations and tie points / Xin Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 5 (May 2019)
![]()
[article]
Titre : Robust structure from motion based on relative rotations and tie points Type de document : Article/Communication Auteurs : Xin Wang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 347 - 359 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] compensation locale par faisceaux
[Termes descripteurs IGN] équation linéaire
[Termes descripteurs IGN] orientation relative
[Termes descripteurs IGN] point de liaison (imagerie)
[Termes descripteurs IGN] rotation
[Termes descripteurs IGN] structure-from-motionRésumé : (Auteur) In this article, we present two new approaches for image orientation with a focus on robustness, starting with relative orientations of available image pairs, an incremental and a global one, and compare their performance. For the incremental approach, we first choose a suitable initial image pair, and we then iteratively extend the image cluster by adding new images. The rotations of these newly added images are estimated from relative rotations by single rotation averaging. In the next step, a linear equation system is set up for each new image to solve the translation parameters with triangulated tie points that can be viewed in that new image, followed by a resection for refinement. Finally, we refine the orientation parameters of the images by a local bundle adjustment. We also present a global method that consists of two parts: global rotation averaging, followed by setting up a large linear equation system to solve for all image translation parameters simultaneously; a final bundle adjustment is carried out to refine the results. We compare these two methods by analyzing results on different benchmark sets, including ordered and unordered image data sets from the Internet and two other challenging data sets to demonstrate the performance of our two approaches. We conclude that while the incremental method typically yields results of higher accuracy and performs better on the challenging data sets, our global method runs significantly faster. Numéro de notice : A2019-438 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.5.347 date de publication en ligne : 01/05/2019 En ligne : https://doi.org/10.14358/PERS.85.5.347 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92769
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 5 (May 2019) . - pp 347 - 359[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019051 SL Revue Centre de documentation Revues en salle Disponible Structure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation / Xin Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
![]()
[article]
Titre : Structure from motion for ordered and unordered image sets based on random k-d forests and global pose estimation Type de document : Article/Communication Auteurs : Xin Wang, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 19 - 41 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] compensation par faisceaux
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] matrice de rotation
[Termes descripteurs IGN] orientation relative
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] recouvrement d'images
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motion
[Termes descripteurs IGN] vision par ordinateurRésumé : (auteur) In this paper, we present a new fast and robust method for structure from motion (SfM) for data sets potentially comprising thousands of ordered or unordered images. Our work focuses on the two most time-consuming procedures: (a) image matching and (b) pose estimation. For image matching, a new method employing a random k-d forest is proposed to quickly obtain pairs of overlapping images from an unordered set. After that, image matching and the estimation of relative orientation parameters are performed only for pairs found to be very likely to overlap. For pose estimation, we use a two-stage global approach, separating the determination of rotation matrices and translation parameters; the latter are computed simultaneously using a new method. In order to cope with outliers in the relative orientations, which global approaches are particularly sensitive to, we present a new constraint based on triplet loop closure errors of rotation and translation. Finally, a robust bundle adjustment is carried out to refine the image orientation parameters. We demonstrate the potential and limitations of our pipeline using various real-world datasets including ordered image data acquired from UAV (unmanned aerial vehicle) and other platforms as well as unordered data from the internet. The experiments show that our work performs better than comparable state-of-the-art SfM systems in terms of run time, while we achieve a similar accuracy and robustness. Numéro de notice : A2019-033 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.009 date de publication en ligne : 15/11/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91970
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 19 - 41[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019013 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
![]()
[article]
Titre : A higher order conditional random field model for simultaneous classification of land cover and land use Type de document : Article/Communication Auteurs : Lena Albert, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2017 Article en page(s) : pp 63 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] prise en compte du contexte
[Termes descripteurs IGN] relation sémantique
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent superpixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intralayer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by interlayer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the superpixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas. Numéro de notice : A2017-510 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.04.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86456
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 63 - 80[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017083 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt IV-1/W1 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1 [30/05/2017]) / Christian Heipke
PermalinkIII-3 - July 2016 - [actes] XXIII ISPRS Congress, Commission III, 12–19 July 2016, Prague, Czech Republic (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Lena Halounova
PermalinkInformation from imagery: ISPRS scientific vision and research agenda / Jun Chen in ISPRS Journal of photogrammetry and remote sensing, vol 115 (May 2016)
PermalinkPermalinkII-3 W5 - October 2015 - [actes] ISPRS Geospatial Week 2015, 28 September–3 October 2015, La Grande Motte, France (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Clément Mallet
PermalinkContextual classification of point cloud data by exploiting individual 3d neigbourhoods / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3 W4 (March 2015)
![]()
Permalinkvol 100 - February 2015 - High-resolution Earth imaging for geospatial information (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Christian Heipke
PermalinkPermalinkvol 93 - July 2014 - Urban object extraction (Bulletin de ISPRS Journal of photogrammetry and remote sensing) / Franz Rottensteiner
PermalinkContextual classification of lidar data and building object detection in urban areas / Joachim Niemeyer in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)
Permalink