Détail de l'auteur
Auteur Bruno Vallet
Commentaire :
Autorités liées :
idHAL :
bruno-vallet
idRef :
autre URL :
ORCID :
Scopus :
Publons :
G. Scholar :
DBLP URL :
|
Documents disponibles écrits par cet auteur (80)



Semantic segmentation of urban textured meshes through point sampling / Grégoire Grzeczkowicz in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Semantic segmentation of urban textured meshes through point sampling Type de document : Article/Communication Auteurs : Grégoire Grzeczkowicz , Auteur ; Bruno Vallet
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 177 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] échantillonnage de données
[Termes IGN] maillage
[Termes IGN] maille carrée
[Termes IGN] maille texturée
[Termes IGN] maille triangulaire
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Textured meshes are becoming an increasingly popular representation combining the 3D geometry and radiometry of real scenes. However, semantic segmentation algorithms for urban mesh have been little investigated and do not exploit all radiometric information. To address this problem, we adopt an approach consisting in sampling a point cloud from the textured mesh, then using a point cloud semantic segmentation algorithm on this cloud, and finally using the obtained semantic to segment the initial mesh. In this paper, we study the influence of different parameters such as the sampling method, the density of the extracted cloud, the features selected (color, normal, elevation) as well as the number of points used at each training period. Our result outperforms the state-of-the-art on the SUM dataset, earning about 4 points in OA and 18 points in mIoU. Numéro de notice : A2022-427 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2022-177-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-177-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100733
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 177 - 184[article]
Titre : 3D mapping at IGN Type de document : Article/Communication Auteurs : Bruno Vallet , Auteur
Editeur : Stuttgart : Institüt für Photogrammetrie der Universität Stuttgart Année de publication : 2022 Conférence : PhoWo 2022, 58th Photogrammetric Week 13/09/2022 16/09/2022 Stuttgart Allemagne Langues : Anglais (eng) Numéro de notice : C2022-035 Affiliation des auteurs : UGE-LASTIG (2020- ) Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101579
Titre : A 3D segments based algorithm for heterogeneous data registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet , Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 129 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme du recuit simulé
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] orthoimage
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] segment de droite
[Termes IGN] superposition de donnéesRésumé : (auteur) Combining image and LiDAR draws increasing interest in surface reconstruction, city and building modeling for constructing 3D virtual reality models because of their complementary nature. However, to gain from this complementarity, these data sources must be precisely registered. In this paper, we propose a new primitive based registration algorithm that takes 3D segments as features. The objective of the proposed algorithm is to register heterogeneous data. The heterogeneity is both in data type (image and LiDAR) and acquisition platform (terrestrial and aerial). Our algorithm starts by extracting 3D segments from LiDAR and image data with state of the art algorithms. Then it clusters the 3D segments of each data according to their directions. The obtained clusters are associated to find possible rotations, then 3D segments from associated clusters are matched in order to find the translation and scale factor minimizing a distance criteria between the two sets of 3D segments. Two optimizers (simulated annealing and RANSAC) are tested to minimize this distance criterion, first on synthetic data, then on real data. The experiments carried out demonstrate the robustness and speed of RANSAC compared to simulated annealing. Numéro de notice : C2022-018 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-129-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-129-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100844
Titre : AI4GEO: A path from 3D model to digital twin Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Simon Baillarin, Auteur ; Pierre Lassalle, Auteur ; Flora Weissgerber, Auteur ; Bruno Vallet , Auteur ; Christophe Triquet, Auteur ; Gilles Foulon, Auteur ; Gaëlle Romeyer
, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2022 Projets : AI4GEO / Conférence : IGARSS 2022, IEEE International Geoscience And Remote Sensing Symposium 17/07/2022 22/07/2022 Kuala Lumpur Malaysie Proceedings IEEE Importance : pp 4728 - 4731 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] CityGML
[Termes IGN] données localisées 3D
[Termes IGN] jumeau numérique
[Termes IGN] segmentation sémantique
[Termes IGN] ville intelligenteRésumé : (auteur) 3D Geospatial information plays a key role in many soaring sectors such as sustainable and smart cities, climate monitoring, ecological mobility, and economic intelligence. The availability of huge volumes of satellite, airborne and insitu data now makes this production feasible at large scale. It needs nonetheless a certain level of manual intervention to secure the level of quality, which prevents mass production. This paper presents the AI4GEO program that aims at developing an end to end solution to produce automatically qualified 3D Digital model at scale together with multiple layers of information. Numéro de notice : C2022-040 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS46834.2022.9883433 Date de publication en ligne : 28/09/2022 En ligne : https://doi.org/10.1109/IGARSS46834.2022.9883433 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101768
Titre : Deep surface reconstruction from point clouds with visibility information Type de document : Article/Communication Auteurs : Raphaël Sulzer , Auteur ; Loïc Landrieu
, Auteur ; Alexandre Boulch, Auteur ; Renaud Marlet, Auteur ; Bruno Vallet
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : BIOM / Vallet, Bruno Conférence : ICPR 2022, 26th International Conference on Pattern Recognition 21/08/2022 25/08/2022 Montréal Québec - Canada Proceedings IEEE Importance : 13 p. Format : 21 x 30 cm Note générale : bibliographie
https://doi.org/10.48550/arXiv.2202.01810 sur ArXivLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] visibilitéRésumé : (auteur) Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains. Numéro de notice : C2022-048 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.48550/arXiv.2202.01810 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1109/ICPR56361.2022.9956560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99811 PermalinkLearning multi-view aggregation in the wild for large-scale 3D semantic segmentation / Damien Robert (2022)
PermalinkPermalinkScalable surface reconstruction with Delaunay-Graph neural networks / Raphaël Sulzer in Computer graphics forum, vol 40 n° 5 (2021)
PermalinkTowards efficient indoor/outdoor registration using planar polygons / Rahima Djahel in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
PermalinkPermalinkPermalinkPermalinkPermalinkPlanar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
Permalink
Senior researcher, head of ACTE team inside LaSTIG (ex MATIS) since 2008