Détail de l'auteur
Auteur J. Goolsby |
Documents disponibles écrits par cet auteur (1)



Applying six classifiers to airborne hyperspectral imagery for detecting giant reed / C. Yang in Geocarto international, vol 27 n° 5 (August 2012)
![]()
[article]
Titre : Applying six classifiers to airborne hyperspectral imagery for detecting giant reed Type de document : Article/Communication Auteurs : C. Yang, Auteur ; J. Goolsby, Auteur ; James H. Everitt, Auteur ; Q. Du, Auteur Année de publication : 2012 Article en page(s) : pp 413 - 424 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classificateur
[Termes IGN] classification barycentrique
[Termes IGN] classification par la distance de Mahalanobis
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification Spectral angle mapper
[Termes IGN] espèce exotique envahissante
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] macrophyte
[Termes IGN] Mexique
[Termes IGN] Rio Grande (fleuve)Résumé : (Auteur) This study evaluated and compared six image classifiers, including minimum distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and support vector machine (SVM), for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems throughout the southern US and northern Mexico. Airborne hyperspectral imagery was collected from a giant reed-infested site along the US-Mexican portion of the Rio Grande in 2009 and 2010. The imagery was transformed with minimum noise fraction (MFN) and the six classifiers were applied to the 30-band MNF imagery for each year. Accuracy assessment showed that SVM and ML generally performed better than the other four classifiers for overall classification and for distinguishing giant reed in both years. These results indicate that airborne hyperspectral imagery in conjunction with SVM and ML classification techniques is effective for detecting giant reed. Numéro de notice : A2012-371 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2011.643321 Date de publication en ligne : 04/01/2012 En ligne : https://doi.org/10.1080/10106049.2011.643321 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31817
in Geocarto international > vol 27 n° 5 (August 2012) . - pp 413 - 424[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2012051 RAB Revue Centre de documentation En réserve L003 Disponible