Détail de l'auteur
Auteur F. Mercier |
Documents disponibles écrits par cet auteur (4)



Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation / Alexandre Couhert in Journal of geodesy, vol 94 n° 12 (December 2020)
![]()
[article]
Titre : Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation Type de document : Article/Communication Auteurs : Alexandre Couhert, Auteur ; Christian Bizouard, Auteur ; F. Mercier, Auteur ; Kristel Chanard , Auteur ; Marianne Greff-Lefftz, Auteur ; Pierre Exertier, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 113 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données Ajisai
[Termes IGN] données Jason
[Termes IGN] données Lageos
[Termes IGN] données LARES
[Termes IGN] données Starlette
[Termes IGN] données Stella
[Termes IGN] données TLS (télémétrie)
[Termes IGN] erreur de modèle
[Termes IGN] harmonique sphérique
[Termes IGN] incertitude géométrique
[Termes IGN] mouvement du géocentre
[Termes IGN] surface de la merRésumé : (auteur) The very low-degree Earth’s gravity coefficients, associated with the largest-scale mass redistribution in the Earth’s fluid envelope (atmosphere, oceans and continental hydrology), are the most poorly known. In particular, the first three degree geopotential terms are important, as they relate to intrinsic Earth’s mass references: gravitational coefficient (GM) of the Earth (degree 0), geocenter motion (degree 1), Earth’s figure axis orientation (degree 2). This paper presents a self-consistent determination of these three properties of the Earth. The main objective is to deal with the remaining sources of altimetry satellite orbit uncertainties affecting the fundamental record of sea surface height measurements. The analysis identifies the modeling errors, which should be mitigated when estimating the geocenter coordinates from Satellite Laser Ranging (SLR) observations. The long-term behavior of the degree-0 and -2 spherical harmonics is also observed over the 34-year period 1984–2017 from the long-time history of satellite laser tracking to geodetic spherical satellites. From the analysis of the evolution of these two coefficients, constraints regarding the Earth’s rheology and uncertainties in the value of GM could be inferred. Overall, the influence of the orbit characteristics, SLR station ranging/position biases and satellite signature effects, measurement modeling errors (tropospheric corrections, non-tidal deformations) are also discussed. Numéro de notice : A2020-330 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01450-z Date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1007/s00190-020-01450-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96858
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 113[article]GNSS satellite geometry and attitude models / Oliver Montenbruck in Advances in space research, vol 56 n° 6 (September 2015)
![]()
[article]
Titre : GNSS satellite geometry and attitude models Type de document : Article/Communication Auteurs : Oliver Montenbruck, Auteur ; Ralf Schmid, Auteur ; F. Mercier, Auteur ; Peter Steigenberger, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1015 - 1029 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GNSS
[Termes IGN] centre de phase
[Termes IGN] données TLS (télémétrie)
[Termes IGN] format ANTEX
[Termes IGN] satellite de positionnement
[Termes IGN] satellite de télémétrieRésumé : (auteur) This article discusses the attitude modes employed by present Global (and Regional) Navigation Satellite Systems (GNSSs) and the models used to describe them along with definitions of the constellation-specific spacecraft body frames. A uniform convention for the labeling of the principal spacecraft axes is proposed by the International GNSS Service (IGS), which results in a common formulation of the nominal attitude of all GNSS satellites in yaw-steering mode irrespective of their specific orbit and constellation. The conventions defined within this document provide the basis for the specification of antenna phase center offsets and variations in a multi-GNSS version of the IGS absolute phase center model in the ANTEX (antenna exchange) format. To facilitate the joint analysis of GNSS observations and satellite laser ranging measurements, laser retroreflector array coordinates consistent with the IGS-specific spacecraft frame conventions are provided in addition to representative antenna offset values for all GNSS constellations. Numéro de notice : A2015-874 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2015.06.019 En ligne : http://dx.doi.org/10.1016/j.asr.2015.06.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79376
in Advances in space research > vol 56 n° 6 (September 2015) . - pp 1015 - 1029[article]Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center / Sylvain Loyer in Journal of geodesy, vol 86 n° 11 (November 2012)
![]()
[article]
Titre : Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center Type de document : Article/Communication Auteurs : Sylvain Loyer, Auteur ; Félix Perosanz, Auteur ; F. Mercier, Auteur ; et al., Auteur Année de publication : 2012 Article en page(s) : pp 991 - 1003 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] données GPS
[Termes IGN] GINS
[Termes IGN] International GNSS Service
[Termes IGN] international GPS service for geodynamics
[Termes IGN] orbitographie
[Termes IGN] orientation de la Terre
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] simple différence
[Termes IGN] traitement de données GNSSRésumé : (Auteur) CNES (Centre National d’Etudes Spatiales) and CLS (Collecte Localisation Satellites) became an International GNSS Service (IGS) Analysis Center (AC) the 20th of May 2010. Since 2009, we are using the integer ambiguity fixing at the zero-difference level strategy in our software package (GINS/Dynamo) as an alternative to classical differential approaches. This method played a key role among all the improvements in the GPS processing we made during this period. This paper provides to the users the theoretical background, the strategies and the models used to compute the products (GPS orbits and clocks, weekly station coordinate estimates and Earth orientation parameters) that are submitted weekly to the IGS. The practical realization of the two-step, ambiguity-fixing scheme (wide-lane and narrow-lane) is described in detail. The ambiguity fixing improved our orbit overlaps from 6 to 3 cm WRMS in the tangential and normal directions. Since 2008, our products have been also regularly compared to the IGS final solutions by the IGS Analysis Center Coordinator. The joint effects of ambiguity fixing and dynamical model changes (satellite solar radiation pressure and albedo force) improved the consistency with IGS orbits from 35 to 18 mm 3D-WRMS. Our innovative strategy also gives additional powerful properties to the GPS satellite phase clock solutions. Single receiver (zero-difference) ambiguity resolution becomes possible. An overview of the applications is given. Numéro de notice : A2012-577 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0559-2 Date de publication en ligne : 03/04/2012 En ligne : https://doi.org/10.1007/s00190-012-0559-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32023
in Journal of geodesy > vol 86 n° 11 (November 2012) . - pp 991 - 1003[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012111 RAB Revue Centre de documentation En réserve L003 Disponible Precision orbit determination standards for the Jason series of altimeter missions / L. Cerri in Marine geodesy, vol 33 suppl 1 (August 2010)
![]()
[article]
Titre : Precision orbit determination standards for the Jason series of altimeter missions Type de document : Article/Communication Auteurs : L. Cerri, Auteur ; Jean-Paul Berthias, Auteur ; Willy I. Bertiger, Auteur ; Bruce J. Haines, Auteur ; F. Lemoine, Auteur ; F. Mercier, Auteur ; J.C. Ries, Auteur ; Pascal Willis , Auteur ; Nikita P. Zelensky, Auteur ; Marek Ziebart, Auteur
Année de publication : 2010 Article en page(s) : pp 379 - 418 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] distorsion radiale
[Termes IGN] Jason
[Termes IGN] mission spatiale
[Termes IGN] orbitographieRésumé : (Auteur) The Jason-1 altimeter satellite and its follow-on mission Jason-2/OSTM were launched in December 2001 and June 2008, respectively, to provide the scientific community with a high-accuracy continuous record of observations of the ocean surface topography. Both missions carry on board three state-of-the-art tracking systems (DORIS, GPS, SLR) to meet the requirement of better-than-1.5 cm radial accuracy for the operational orbit included in the geophysical data record (GDR) product.
This article outlines the common set of models and processing techniques applied to both Jason reprocessed and operational orbits included in version C of the GDR, referred to as GDR-C standards for precision orbit determination (POD), and describes the systematic components of the radial error budget that are of most interest for the altimeter data analysts. The nonsystematic component of the error budget, quantified by intercomparison of orbits using similar models or with reduced dependency on the dynamic models, is generally at or below 7 mm RMS (root-mean-square). In particular, the average daily RMS of the radial difference between the JPL and CNES reduced-dynamic orbits on Jason-2 is below 6 mm. Concerning the dynamic models employed, the principal contributors to residual systematic differences appear to be the time varying gravity and solar radiation pressure, resulting in geographically correlated periodic signals that have amplitudes at the few-mm level. Concerning the drifts of the orbits along the North/South direction, all solutions agree to better than the 1 mm/year level.Numéro de notice : A2010-642 Affiliation des auteurs : IGN+Ext (1940-2011) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2010.488966 Date de publication en ligne : 09/08/2010 En ligne : https://doi.org/10.1080/01490419.2010.488966 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90716
in Marine geodesy > vol 33 suppl 1 (August 2010) . - pp 379 - 418[article]