Détail de l'auteur
Auteur Tomoaki Miura |
Documents disponibles écrits par cet auteur (2)



Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
![]()
[article]
Titre : Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Charlotte Z. Smith, Auteur ; Hiroki Yoshioka, Auteur Année de publication : 2021 Article en page(s) : n° 112344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] image Aqua-MODIS
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance du solRésumé : (auteur) Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous studies have evaluated how well VI products capture variations in vegetation biophysical or physiological conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ reflectance measurements acquired over the 1 km-by−1 km Radiometric Calibration Test Site (RadCaTS) located on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a reference. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with the RadCaTS counterparts and across the three sensors than the satellite EVI. Numéro de notice : A2021-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112344 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97370
in Remote sensing of environment > vol 257 (May 2021) . - n° 112344[article]Spectral compatibility of the NDVI across VIIRS, MODIS, and AVHRR: An analysis of atmospheric effects using EO-1 Hyperion / Tomoaki Miura in IEEE Transactions on geoscience and remote sensing, vol 51 n° 3 Tome 1 (March 2013)
![]()
[article]
Titre : Spectral compatibility of the NDVI across VIIRS, MODIS, and AVHRR: An analysis of atmospheric effects using EO-1 Hyperion Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Joshua P. Turner, Auteur ; Alfredo R. Huete, Auteur Année de publication : 2013 Article en page(s) : pp 1349 - 1359 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] correction atmosphérique
[Termes IGN] effet atmosphérique
[Termes IGN] image EO1-Hyperion
[Termes IGN] image NOAA-AVHRR
[Termes IGN] image NPP-VIIRS
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surveillance de la végétationRésumé : (Auteur) We evaluated the cross-sensor compatibilities of the normalized difference vegetation index (NDVI) across the Visible/Infrared Imager/Radiometer Suite (VIIRS), Moderate Resolution Imaging Spectroradiometer (MODIS), and the National Oceanic and Atmospheric Administration (NOAA)-14 and NOAA-19 Advanced Very High Resolution Radiometer (AVHRR) (AVHRR/2 and AVHRR/3) bandpasses using a global set of Earth Observing One Hyperion hyperspectral data. Five levels of atmospheric correction were simulated to examine the impact of the atmosphere on intersensor NDVI compatibility. These were the uncorrected “top-of-atmosphere”; Rayleigh (RAY); Rayleigh and ozone (RO); Rayleigh, ozone, and water vapor (ROW); and total atmosphere-corrected “top-of-canopy (TOC)” reflectances. Among all possible sensor pairs examined, the highest compatibility was observed for VIIRS versus MODIS. Cross-sensor NDVI relationships between the two sensor bandpasses remained nearly the same throughout all levels of atmospheric correction. AVHRR/3-versus-AVHRR/2 NDVI relationships changed very little and also showed an equivalent level of compatibility to VIIRS versus MODIS across all levels of atmospheric correction although they were subject to systematic differences. Intersensor NDVI compatibilities of VIIRS and MODIS to AVHRR/2 and to AVHRR/3 were lower due primarily to the differential sensitivities of these sensors' near-infrared bands to the atmospheric water vapor effects. Comparisons of cross-sensor NDVI compatibilities where operational atmospheric correction schemes were assumed for each of the sensors suggest the need of VIIRS TOC NDVI for long-term continuity with MODIS and AVHRR, which is not currently produced as part of the standard VIIRS Vegetation Index Environmental Data Record. Numéro de notice : A2013-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2224118 En ligne : https://doi.org/10.1109/TGRS.2012.2224118 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32264
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 3 Tome 1 (March 2013) . - pp 1349 - 1359[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013031A RAB Revue Centre de documentation En réserve 3L Disponible