Détail de l'auteur
Auteur Jie Yang |
Documents disponibles écrits par cet auteur (5)



SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] coin réflecteur
[Termes IGN] dégradation du signal
[Termes IGN] données polarimétriques
[Termes IGN] étalonnage
[Termes IGN] extraction automatique
[Termes IGN] image radar moirée
[Termes IGN] interruption du signal
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering / Liyuan Ma in European journal of remote sensing, vol 53 n° 1 (2020)
![]()
[article]
Titre : Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering Type de document : Article/Communication Auteurs : Liyuan Ma, Auteur ; Jia Zhenhong, Auteur ; Jie Yang, Auteur ; Nikola Kasabov, Auteur Année de publication : 2020 Article en page(s) : pp 1 -13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] coefficient de corrélation
[Termes IGN] détection de changement
[Termes IGN] distance euclidienne
[Termes IGN] image multibande
[Termes IGN] itération
[Termes IGN] masque
[Termes IGN] pondérationRésumé : (auteur) In the present study, an improved iteratively reweighted multivariate alteration detection (IR-MAD) algorithm was proposed to improve the contribution of weakly correlated bands in multi-spectral image change detection. In the proposed algorithm, each image band was given a different weight through single-band iterative weighting, improving the correlation between each pair of bands. This method was used to obtain the characteristic difference in the diagrams of the band that contain more variation information. After removing Gaussian noise from each feature-difference graph, the difference graphs of each band were fused into a change-intensity graph using the Euclidean distance formula. Finally, unsupervised fuzzy C-means (FCM) clustering was used to perform binary clustering on the fused difference graphs to obtain the change detection results. By comparing the original multivariate alteration detection (MAD) algorithm, the IR-MAD algorithm and the proposed IR-MAD algorithm, which used a mask to eliminate strong changes, the experimental results revealed that the multi-spectral change detection results of the proposed algorithm are closer to the actual value and had higher detection accuracy than the other algorithms. Numéro de notice : A2020-164 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2019.1707124 Date de publication en ligne : 26/12/2020 En ligne : https://doi.org/10.1080/22797254.2019.1707124 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94831
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 1 -13[article]Progressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
![]()
[article]
Titre : Progressive amalgamation of building clusters for map generalization based on scaling subgroups Type de document : Article/Communication Auteurs : Xianjin He, Auteur ; Xinchang Zhang, Auteur ; Jie Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] approche hiérarchique
[Termes IGN] généralisation du bâti
[Termes IGN] regroupement de données
[Termes IGN] représentation multiple
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map generalization utilizes transformation operations to derive smaller-scale maps from larger-scale maps, and is a key procedure for the modelling and understanding of geographic space. Studies to date have largely applied a fixed tolerance to aggregate clustered buildings into a single object, resulting in the loss of details that meet cartographic constraints and may be of importance for users. This study aims to develop a method that amalgamates clustered buildings gradually without significant modification of geometry, while preserving the map details as much as possible under cartographic constraints. The amalgamation process consists of three key steps. First, individual buildings are grouped into distinct clusters by using the graph-based spatial clustering application with random forest (GSCARF) method. Second, building clusters are decomposed into scaling subgroups according to homogeneity with regard to the mean distance of subgroups. Thus, hierarchies of building clusters can be derived based on scaling subgroups. Finally, an amalgamation operation is progressively performed from the bottom-level subgroups to the top-level subgroups using the maximum distance of each subgroup as the amalgamating tolerance instead of using a fixed tolerance. As a consequence of this step, generalized intermediate scaling results are available, which can form the multi-scale representation of buildings. The experimental results show that the proposed method can generate amalgams with correct details, statistical area balance and orthogonal shape while satisfying cartographic constraints (e.g., minimum distance and minimum area). Numéro de notice : A2018-102 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030116 En ligne : https://doi.org/10.3390/ijgi7030116 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89517
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]An experimental comparison of semi-supervised learning algorithms for multispectral image classification / Enmei Tu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 4 (April 2013)
![]()
[article]
Titre : An experimental comparison of semi-supervised learning algorithms for multispectral image classification Type de document : Article/Communication Auteurs : Enmei Tu, Auteur ; Jie Yang, Auteur ; Jiangxiong Fang, Auteur ; Zhenghong Jia, Auteur ; Nikola Kasabov, Auteur Année de publication : 2013 Article en page(s) : pp 347 - 357 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat
[Termes IGN] image multibande
[Termes IGN] série de TaylorRésumé : (Auteur) Semi-Supervised Learning (SSL) method has recently caught much attention in the fields of machine learning and computer vision owing to its superiority in classifying abundant unlabelled samples using a few labeled samples. The goal of this paper is to provide an experimental efficiency comparison between graph based SSL algorithms and traditional supervised learning algorithms (e.g., support vector machines) for multispectral image classification. This research shows that SSL algorithms generally outperform supervised learning algorithms in both classification accuracy and anti-noise ability. In the experiments carried out on two data sets (hyperspectral image and Landsat image), the mean overall accuracies (OAs) of supervised learning algorithms are 15 percent and 86 percent, while the mean oas of SSL algorithms are 26 percent and 99 percent. To overcome the polynomial complexity of SSL algorithms, we also developed a linear-complexity algorithm by employing multivariate Taylor Series Expansion (TSE) and Woodbury Formula. Numéro de notice : A2013-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.4.347 En ligne : https://doi.org/10.14358/PERS.79.4.347 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32343
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 4 (April 2013) . - pp 347 - 357[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2013041 RAB Revue Centre de documentation En réserve 3L Disponible 105-2013042 RAB Revue Centre de documentation En réserve 3L Disponible