Détail de l'auteur
Auteur Jie Yang |
Documents disponibles écrits par cet auteur (7)



A network-constrained clustering method for bivariate origin-destination movement data / Wenkai Liu in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
![]()
[article]
Titre : A network-constrained clustering method for bivariate origin-destination movement data Type de document : Article/Communication Auteurs : Wenkai Liu, Auteur ; Qiliang Liu, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 767 - 787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] origine - destination
[Termes IGN] réseau routierRésumé : (auteur) For bivariate origin-destination (OD) movement data composed of two types of individual OD movements, a bivariate cluster can be defined as a group of two types of OD movements, at least one of which has a high density. The identification of such bivariate clusters can provide new insights into the spatial interactions between different movement patterns. Because of spatial heterogeneity, the effective detection of inhomogeneous and irregularly shaped bivariate clusters from bivariate OD movement data remains a challenge. To fill this gap, we propose a network-constrained method for clustering two types of individual OD movements on road networks. To adaptively estimate the densities of inhomogeneous OD movements, we first define a new network-constrained density based on the concept of the shared nearest neighbor. A fast Monte Carlo simulation method is then developed to statistically estimate the density threshold for each type of OD movements. Finally, bivariate clusters are constructed using the density-connectivity mechanism. Experiments on simulated datasets demonstrate that the proposed method outperformed three state-of-the-art methods in identifying inhomogeneous and irregularly shaped bivariate clusters. The proposed method was applied to taxi and ride-hailing service datasets in Xiamen. The identified bivariate clusters successfully reveal competition patterns between taxi and ride-hailing services. Numéro de notice : A2023-206 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2137879 Date de publication en ligne : 25/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2137879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103108
in International journal of geographical information science IJGIS > vol 37 n° 4 (April 2023) . - pp 767 - 787[article]Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)
![]()
[article]
Titre : Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud Type de document : Article/Communication Auteurs : Jie Yang, Auteur ; Xiaorong Wen, Auteur ; Qiulai Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] branche (arbre)
[Termes IGN] C++
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] itération
[Termes IGN] modélisation de la forêt
[Termes IGN] semis de points
[Termes IGN] squelettisationRésumé : (auteur) More accurate tree models, such as branch skeleton, are needed to acquire forest inventory data. Currently available algorithms for constructing a branch skeleton from a LiDAR point cloud have low accuracy with problems such as irrational connection near trunk bifurcation, excessive central deviation and topological errors. Using the C++ and PCL library, a novel algorithm of the incomplete simulation of tree transmitting water and nutrients (ISTTWN), based on geometric characteristics for tree branch skeleton extraction, was developed in this research. The algorithm is an incomplete simulation of tree transmitting water and nutrients. Improvements were made to improve the time and memory consumption. The result show that the ISTTWN algorithm without any improvements is quite time consuming but has consecutive output. After improvement with iteration, the process is faster and has more detailed output. Breakpoint connection is added to recover continuity. The ISTTWN algorithm with improvements can produce a more accurate skeleton and cost less time than a previous algorithm. The superiority and effectiveness of the method are demonstrated, which provides a reference for the subsequent study of tree modeling and a prospect of application in other fields, such as virtual reality, computer games and movie scenes. Numéro de notice : A2022-835 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101534 Date de publication en ligne : 17/09/2022 En ligne : https://doi.org/10.3390/f13101534 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102032
in Forests > vol 13 n° 10 (October 2022) . - n° 1534[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] coin réflecteur
[Termes IGN] dégradation du signal
[Termes IGN] données polarimétriques
[Termes IGN] étalonnage
[Termes IGN] extraction automatique
[Termes IGN] image radar moirée
[Termes IGN] interruption du signal
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering / Liyuan Ma in European journal of remote sensing, vol 53 n° 1 (2020)
![]()
[article]
Titre : Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering Type de document : Article/Communication Auteurs : Liyuan Ma, Auteur ; Jia Zhenhong, Auteur ; Jie Yang, Auteur ; Nikola Kasabov, Auteur Année de publication : 2020 Article en page(s) : pp 1 -13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] coefficient de corrélation
[Termes IGN] détection de changement
[Termes IGN] distance euclidienne
[Termes IGN] image multibande
[Termes IGN] itération
[Termes IGN] masque
[Termes IGN] pondérationRésumé : (auteur) In the present study, an improved iteratively reweighted multivariate alteration detection (IR-MAD) algorithm was proposed to improve the contribution of weakly correlated bands in multi-spectral image change detection. In the proposed algorithm, each image band was given a different weight through single-band iterative weighting, improving the correlation between each pair of bands. This method was used to obtain the characteristic difference in the diagrams of the band that contain more variation information. After removing Gaussian noise from each feature-difference graph, the difference graphs of each band were fused into a change-intensity graph using the Euclidean distance formula. Finally, unsupervised fuzzy C-means (FCM) clustering was used to perform binary clustering on the fused difference graphs to obtain the change detection results. By comparing the original multivariate alteration detection (MAD) algorithm, the IR-MAD algorithm and the proposed IR-MAD algorithm, which used a mask to eliminate strong changes, the experimental results revealed that the multi-spectral change detection results of the proposed algorithm are closer to the actual value and had higher detection accuracy than the other algorithms. Numéro de notice : A2020-164 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2019.1707124 Date de publication en ligne : 26/12/2020 En ligne : https://doi.org/10.1080/22797254.2019.1707124 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94831
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 1 -13[article]Progressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkAn experimental comparison of semi-supervised learning algorithms for multispectral image classification / Enmei Tu in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 4 (April 2013)
Permalink