Détail de l'auteur
Auteur Lorenzo Bruzzone |
Documents disponibles écrits par cet auteur



LANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : LANet: Local attention embedding to improve the semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Hao Tang, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 426 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] décodage
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) The trade-off between feature representation power and spatial localization accuracy is crucial for the dense classification/semantic segmentation of remote sensing images (RSIs). High-level features extracted from the late layers of a neural network are rich in semantic information, yet have blurred spatial details; low-level features extracted from the early layers of a network contain more pixel-level information but are isolated and noisy. It is therefore difficult to bridge the gap between high- and low-level features due to their difference in terms of physical information content and spatial distribution. In this article, we contribute to solve this problem by enhancing the feature representation in two ways. On the one hand, a patch attention module (PAM) is proposed to enhance the embedding of context information based on a patchwise calculation of local attention. On the other hand, an attention embedding module (AEM) is proposed to enrich the semantic information of low-level features by embedding local focus from high-level features. Both proposed modules are lightweight and can be applied to process the extracted features of convolutional neural networks (CNNs). Experiments show that, by integrating the proposed modules into a baseline fully convolutional network (FCN), the resulting local attention network (LANet) greatly improves the performance over the baseline and outperforms other attention-based methods on two RSI data sets. Numéro de notice : A2021-035 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2994150 date de publication en ligne : 27/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2994150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96737
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 426 - 435[article]A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images / David Pirrone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images Type de document : Article/Communication Auteurs : David Pirrone, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2020 Article en page(s) : pp 4780 - 4795 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] coordonnées polaires
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] méthode des vecteurs de changement
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] radar à antenne synthétiqueRésumé : (auteur) Change detection (CD) is a crucial topic in many remote sensing applications. In the recent years, satellite polarimetric synthetic aperture radar (PolSAR) systems (e.g., the Sentinel-1 constellation) became a suitable tool for multitemporal monitoring due to the regular acquisitions with a short revisit time in different polarimetric channels. Methods for CD in PolSAR data mainly focus on binary CD (i.e., they provide information about the presence/absence of change only), whereas the polarimetric enhanced information provides multiple features that can be exploited for performing multiclass CD. In this article, we introduce a novel framework for the characterization of multitemporal changes in dual-polarimetric data. The framework is based on the definition of polarimetric change vectors (PCVs) and their representation in a polar coordinate system. PCVs allow characterizing and, thus, to separate multiclass changes in terms of target properties of the single-time scenes and the scattering theory. The proposed model is used to: 1) derive the statistical behaviors of change and no change classes in PolSAR multitemporal images; 2) design an automatic and unsupervised strategy to estimate the optimal number of changes; and 3) distinguish no change from change classes and the kinds of change from each other. An experimental analysis has been conducted on three multitemporal PolSAR data sets having different complexities in terms of number and kinds of change classes. The results confirm the effectiveness of the proposed approach and the better performance with respect to both specific techniques for CD in dual-pol SAR data and a general multiclass CD method, not designed for PolSAR data. Numéro de notice : A2020-390 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2966865 date de publication en ligne : 04/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2966865 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95373
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4780 - 4795[article]A novel sharpening approach for superresolving multiresolution optical images / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
![]()
[article]
Titre : A novel sharpening approach for superresolving multiresolution optical images Type de document : Article/Communication Auteurs : Claudia Paris, Auteur ; José Bioucas-Dias, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1545 - 1560 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] problème inverseRésumé : (Auteur) This paper aims to provide a compact superresolution formulation specific for multispectral (MS) multiresolution optical data, i.e., images characterized by different scales across different spectral bands. The proposed method, named multiresolution sharpening approach (MuSA), relies on the solution of an optimization problem tailored to the properties of those images. The superresolution problem is formulated as the minimization of an objective function containing a data-fitting term that models the blurs and downsamplings of the different bands and a patch-based regularizer that promotes image self-similarity guided by the geometric details provided by the high-resolution bands. By exploiting the approximately low-rank property of the MS data, the ill-posedness of the inverse problem in hand is strongly reduced, thus sharply improving its conditioning. The state-of-the-art color block-matching and 3D filtering (C-BM3D) image denoiser is used as a patch-based regularizer by leveraging the “plug-and-play” framework: the denoiser is plugged into the iterations of the alternating direction method of multipliers. The main novelties of the proposed method are: 1) the introduction of an observation model tailored to the specific properties of (MS) multiresolution images and 2) the exploitation of the high-spatial-resolution bands to guide the grouping step in the color block-matching and 3D filtering (C-BM3D) denoiser, which constitutes a form of regularization learned from the high-resolution channels. The results obtained on the real and synthetic Sentinel 2 data sets give an evidence of the effectiveness of the proposed approach. Numéro de notice : A2019-129 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867284 date de publication en ligne : 26/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867284 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92458
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1545 - 1560[article]Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery / Lichao Mou in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
![]()
[article]
Titre : Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Lorenzo Bruzzone, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 924 - 935 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] réseau neuronal récurrentRésumé : (Auteur) Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network and a recurrent neural network into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependence in bitemporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) it is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; and 3) it is capable of adaptively learning the temporal dependence between multitemporal images, unlike most of the algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed mode. Numéro de notice : A2019-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2863224 date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2863224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92449
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 924 - 935[article]A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
![]()
[article]
Titre : A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data Type de document : Article/Communication Auteurs : Aravind Harikumar, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1168 - 1182 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] arbre dominant
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] modèle numérique de surface de la canopée
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] projection
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] TrenteRésumé : (Auteur) Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method. Numéro de notice : A2019-112 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865014 date de publication en ligne : 10/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92452
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 1168 - 1182[article]A growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
PermalinkA novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
PermalinkAn internal crown geometric model for conifer species classification with high-density LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
PermalinkA hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
PermalinkKernel-based domain-invariant feature selection in hyperspectral images for transfer learning / Claudio Persello in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
PermalinkUnsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
PermalinkAn approach to fine coregistration between very high resolution multispectral images based on registration noise distribution / Youkyung Han in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
PermalinkSequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)
PermalinkAn adaptive semisupervised approach to the detection of user-defined recurrent changes in image time series / Daniel Zanotta in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkHierarchical unsupervised change detection in multitemporal hyperspectral images / S. Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
Permalink