Détail de l'auteur
Auteur Xiaohua Tong |
Documents disponibles écrits par cet auteur



A review of assessment methods for cellular automata models of land-use change and urban growth / Xiaohua Tong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
![]()
[article]
Titre : A review of assessment methods for cellular automata models of land-use change and urban growth Type de document : Article/Communication Auteurs : Xiaohua Tong, Auteur ; Yongjiu Feng, Auteur Année de publication : 2020 Article en page(s) : pp 866 - 898 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] analyse du paysage
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] dynamique de la végétation
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] Kappa de Cohen
[Termes descripteurs IGN] matrice
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] population urbaine
[Termes descripteurs IGN] propagation d'erreurRésumé : (auteur) Cellular automata (CA) models are in growing use for land-use change simulation and future scenario prediction. It is necessary to conduct model assessment that reports the quality of simulation results and how well the models reproduce reliable spatial patterns. Here, we review 347 CA articles published during 1999–2018 identified by a Scholar Google search using ‘cellular automata’, ‘land’ and ‘urban’ as keywords. Our review demonstrates that, during the past two decades, 89% of the publications include model assessment related to dataset, procedure and result using more than ten different methods. Among all methods, cell-by-cell comparison and landscape analysis were most frequently applied in the CA model assessment; specifically, overall accuracy and standard Kappa coefficient respectively rank first and second among all metrics. The end-state assessment is often criticized by modelers because it cannot adequately reflect the modeling ability of CA models. We provide five suggestions to the method selection, aiming to offer a background framework for future method choices as well as urging to focus on the assessment of input data and error propagation, procedure, quantitative and spatial change, and the impact of driving factors. Numéro de notice : A2020-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684499 date de publication en ligne : 05/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684499 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94880
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 866 - 898[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 SL Revue Centre de documentation Revues en salle Disponible A novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
![]()
[article]
Titre : A novel fire index-based burned area change detection approach using Landsat-8 OLI data Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Yongjie Zheng, Auteur ; Michele Dalponte, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 104 - 112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] brûlis
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background. Numéro de notice : A2020-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1738900 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1080/22797254.2020.1738900 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94836
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 104 - 112[article]A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods / Yongjiu Feng in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
![]()
[article]
Titre : A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 74 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] automate cellulaire
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] dynamique spatiale
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] modèle de Markov
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] Shanghai (Chine)
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) We develop a new geographical cellular automata (CA) modeling framework, named UrbanCA, through reconstructing the essential CA structure and incorporating nonspatial, spatial, and heuristic approaches. The new UrbanCA is featured by 1) the improvement of the CA modeling framework by reformulating relationships among CA components, 2) the development of two scaling parameters to adjust the effects of transition probability and neighborhood, 3) the incorporation of a variety of statistical and heuristic methods to construct transition rules, and 4) the inclusion of urban planning regulations and spatial heterogeneities to project future urban scenarios. To illustrate the effectiveness of UrbanCA, we calibrate a CA model using artificial bee colony (ABC) to simulate the past urban patterns and predict future scenarios in Shanghai of China. The results show that UrbanCA under different scaling parameters is comparable to CA-Markov (as a reference model) concerning the accuracy of the end-state and change simulations, and is better than CA-Markov regarding the driving factor’s ability to explain the modeling outcomes. UrbanCA provides more choices compared to existing CA software packages, and the models are readily calibrated elsewhere to simulate the dynamic urban growth and assess the resulting natural and socioeconomic impacts. Numéro de notice : A2020-008 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1648813 date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1080/13658816.2019.1648813 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94388
in International journal of geographical information science IJGIS > vol 34 n° 1 (January 2020) . - pp 74 - 97[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020011 SL Revue Centre de documentation Revues en salle Disponible LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
![]()
[article]
Titre : LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; Feiping Nie, Auteur ; Haiyang Huang, Auteur ; Jie Mei, Auteur Année de publication : 2018 Article en page(s) : pp 621 - 634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] programmation par contraintes
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] scèneRésumé : (Auteur) The performance of scene classification relies heavily on the spatial and structural features that are extracted from high spatial resolution remote-sensing images. Existing approaches, however, are limited in adequately exploiting latent relationships between scene images. Aiming to decrease the distances between intraclass images and increase the distances between interclass images, we propose a latent relationship learning framework that integrates an adaptive graph with the constraints of the feature space and label propagation for high-resolution aerial image classification. To describe the latent relationships among scene images in the framework, we construct an adaptive graph that is embedded into the constrained joint space for features and labels. To remove redundant information and improve the computational efficiency, subspace learning is introduced to assist in the latent relationship learning. To address out-of-sample data, linear regression is adopted to project the semisupervised classification results onto a linear classifier. Learning efficiency is improved by minimizing the objective function via the linearized alternating direction method with an adaptive penalty. We test our method on three widely used aerial scene image data sets. The experimental results demonstrate the superior performance of our method over the state-of-the-art algorithms in aerial scene image classification. Numéro de notice : A2018-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2752217 date de publication en ligne : 24/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2752217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89854
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 621 - 634[article]Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
![]()
[article]
Titre : Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification Type de document : Article/Communication Auteurs : Zhenxin Zhang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 7309 - 7322 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classificateur
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] extraction de points
[Termes descripteurs IGN] problème de DirichletRésumé : (Auteur) Efficient presentation and recognition of on-ground objects from airborne laser scanning (ALS) point clouds are a challenging task. In this paper, we propose an approach that combines a discriminative-dictionary-learning-based sparse coding and latent Dirichlet allocation (LDA) to generate multilevel point-cluster features for ALS point-cloud classification. Our method takes advantage of the labels of training data and each dictionary item to enforce discriminability in sparse coding during the dictionary learning process and more accurately further represent point-cluster features. The multipath AdaBoost classifiers with the hierarchical point-cluster features are trained, and we apply them to the classification of unknown points by the heritance of the recognition results under different paths. Experiments are performed on different ALS point clouds; the experimental results have shown that the extracted point-cluster features combined with the multipath classifiers can significantly enhance the classification accuracy, and they have demonstrated the superior performance of our method over other techniques in point-cloud classification. Numéro de notice : A2016-931 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2016.2599163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83345
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 12 (December 2016) . - pp 7309 - 7322[article]A multilevel point-cluster-based discriminative feature for ALS point cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkAttraction-repulsion model-based subpixel mapping of multi-/hyperspectral imagery / Xiaohua Tong in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)
PermalinkUse of shadows for detection of earthquake-induced collapsed buildings in high-resolution satellite imagery / Xiaohua Tong in ISPRS Journal of photogrammetry and remote sensing, vol 79 (May 2013)
Permalink