Détail de l'auteur
Auteur Maorong Ge |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination / Xinghan Chen in Journal of geodesy, vol 93 n° 9 (September 2019)
[article]
Titre : Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination Type de document : Article/Communication Auteurs : Xinghan Chen, Auteur ; Maorong Ge, Auteur ; Haroldo Antonio Marques, Auteur ; Harald Schuh, Auteur Année de publication : 2019 Article en page(s) : pp 1347 - 1365 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] correction ionosphérique
[Termes IGN] orbitographie par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèrique
[Termes IGN] temps réelRésumé : (Auteur) The correction of higher-order ionospheric (HOI) delays remaining in the dual-frequency ionosphere-free combined observations is suggested after the confirmation of its impact on precise Global Navigation Satellite System (GNSS) data processing. However, in the precise orbit determination (POD) for generating ultra-rapid orbits, the higher-order corrections are not always considered most likely because a RT ionospheric model needed for calculating the higher-order corrections is hardly available or the HOI impact is believed rather small compared to the accuracy of the predicted orbit. With the increasing requirement on the positioning performances from various applications, providing more accurate and reliable ultra-rapid orbits becomes an essential task of the real-time GNSS precise positioning services. In this contribution, the temporal–spatial characteristics of HOI effects on GNSS observables are investigated thoroughly using data collected from International GNSS Service (IGS) global ground stations and fluctuations of the higher-order delays up to several centimeters are detected during periods of high ionospheric activity. Hereafter, we evaluate the HOI effects on the multi-GNSS POD based on a network with globally distributed IGS stations. Results show that owing to the applied HOI corrections, the agreement of overlapping orbits can be improved significantly for all satellites and especially in radial direction. The three-dimensional RMS values of the overlapping differences are reduced from 1.6, 2.0, 4.6 and 1.7 to 1.0, 1.1, 3.4, and 1.5 cm for GPS, GALILEO, BDS, and GLONASS, respectively. Furthermore, the orbit improvement is also confirmed by the satellite laser ranging (SLR) observations over a 2-month time period where the STD of SLR residuals is reduced by HOI corrections from 6.4 to 5.3 cm for the BDS-IGSO satellites. Numéro de notice : A2019-504 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01249-7 Date de publication en ligne : 23/03/2019 En ligne : https://doi.org/10.1007/s00190-019-01249-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93786
in Journal of geodesy > vol 93 n° 9 (September 2019) . - pp 1347 - 1365[article]Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning / Xingxing Li in Journal of geodesy, vol 93 n° 1 (January 2019)
[article]
Titre : Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Xinghan Chen, Auteur ; Maorong Ge, Auteur ; Harald Schuh, Auteur Année de publication : 2019 Article en page(s) : pp 45 - 64 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] délai d'obtention de la première position
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par Galileo
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] temps réelRésumé : (auteur) Currently, with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSS), the real-time positioning and navigation are undergoing dramatic changes with potential for a better performance. To provide more precise and reliable ultra-rapid orbits is critical for multi-GNSS real-time positioning, especially for the three merging constellations Beidou, Galileo and QZSS which are still under construction. In this contribution, we present a five-system precise orbit determination (POD) strategy to fully exploit the GPS + GLONASS + BDS + Galileo + QZSS observations from CDDIS + IGN + BKG archives for the realization of hourly five-constellation ultra-rapid orbit update. After adopting the optimized 2-day POD solution (updated every hour), the predicted orbit accuracy can be obviously improved for all the five satellite systems in comparison to the conventional 1-day POD solution (updated every 3 h). The orbit accuracy for the BDS IGSO satellites can be improved by about 80, 45 and 50% in the radial, cross and along directions, respectively, while the corresponding accuracy improvement for the BDS MEO satellites reaches about 50, 20 and 50% in the three directions, respectively. Furthermore, the multi-GNSS real-time precise point positioning (PPP) ambiguity resolution has been performed by using the improved precise satellite orbits. Numerous results indicate that combined GPS + BDS + GLONASS + Galileo (GCRE) kinematic PPP ambiguity resolution (AR) solutions can achieve the shortest time to first fix (TTFF) and highest positioning accuracy in all coordinate components. With the addition of the BDS, GLONASS and Galileo observations to the GPS-only processing, the GCRE PPP AR solution achieves the shortest average TTFF of 11 min with 7∘ cutoff elevation, while the TTFF of GPS-only, GR, GE and GC PPP AR solution is 28, 15, 20 and 17 min, respectively. As the cutoff elevation increases, the reliability and accuracy of GPS-only PPP AR solutions decrease dramatically, but there is no evident decrease for the accuracy of GCRE fixed solutions which can still achieve an accuracy of a few centimeters in the east and north components. Numéro de notice : A2019-032 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1138-y Date de publication en ligne : 27/03/2018 En ligne : https://doi.org/10.1007/s00190-018-1138-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91969
in Journal of geodesy > vol 93 n° 1 (January 2019) . - pp 45 - 64[article]LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services / Bofeng Li in Advances in space research, vol 63 n° 1 (1 January 2019)
[article]
Titre : LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services Type de document : Article/Communication Auteurs : Bofeng Li, Auteur ; Haibo Ge, Auteur ; Maorong Ge, Auteur ; Liangwei Nie, Auteur ; Yunzhong Shen, Auteur ; Harald Schuh, Auteur Année de publication : 2019 Article en page(s) : pp 73 - 93 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] affaiblissement géométrique de la précision
[Termes IGN] étude de faisabilité
[Termes IGN] orbitographie
[Termes IGN] positionnement ponctuel précis
[Termes IGN] satellite de télécommunication
[Termes IGN] simulation
[Termes IGN] temps réelMots-clés libres : LEO constellation enhanced GNSS Résumé : (Auteur) Global Navigation Satellite System (GNSS) has been widely used in many geosciences areas with its Positioning, Navigation and Timing (PNT) service. However, GNSS still has its own bottleneck, such as the long initialization period of Precise Point Positioning (PPP) without dense reference network. Recently, the concept of PNTRC (Positioning, Navigation, Timing, Remote sensing and Communication) has been put forward, where Low Earth Orbit (LEO) satellite constellations are recruited to fulfill diverse missions. In navigation aspect, a number of selected LEO satellites can be equipped with a transmitter to transmit similar navigation signals to ground users, so that they can serve as GNSS satellites but with much faster geometric change to enhance GNSS capability, which is named as LEO constellation enhanced GNSS (LeGNSS). As a result, the initialization time of PPP is expected to be shortened to the level of a few minutes or even seconds depending on the number of the LEO satellites involved. In this article, we simulate all the relevant data from June 8th to 14th, 2014 and investigate the feasibility of LeGNSS with the concentration on the key issues in the whole data processing for providing real-time PPP service based on a system configuration with fourteen satellites of BeiDou Navigation Satellite System (BDS), twenty-four satellites of the Global Positioning System (GPS), and sixty-six satellites of the Iridium satellite constellations. At the server-end, Precise Orbit Determination (POD) and Precise Clock Estimation (PCE) with various operational modes are investigated using simulated observations. It is found out that GNSS POD with partial LEO satellites is the most practical mode of LeGNSS operation. At the user-end, the Geometry Dilution Of Precision (GDOP) and Signal-In-Space Ranging Error (SISRE) are calculated and assessed for different positioning schemes in order to demonstrate the performance of LeGNSS. Centimeter level SISRE can be achieved for LeGNSS. Numéro de notice : A2019-175 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2018.08.017 Date de publication en ligne : 16/08/2018 En ligne : https://doi.org/10.1016/j.asr.2018.08.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92631
in Advances in space research > vol 63 n° 1 (1 January 2019) . - pp 73 - 93[article]Determining inter-system bias of GNSS signals with narrowly spaced frequencies for GNSS positioning / Yumiao Tian in Journal of geodesy, vol 92 n° 8 (August 2018)
[article]
Titre : Determining inter-system bias of GNSS signals with narrowly spaced frequencies for GNSS positioning Type de document : Article/Communication Auteurs : Yumiao Tian, Auteur ; Zhizhao Liu, Auteur ; Maorong Ge, Auteur ; Frank Neitzel, Auteur Année de publication : 2018 Article en page(s) : pp 873 - 887 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] double différence
[Termes IGN] erreur systématique inter-systèmes
[Termes IGN] fréquence
[Termes IGN] positionnement par GNSS
[Termes IGN] signal GLONASS
[Termes IGN] signal GNSS
[Termes IGN] signal GPSRésumé : (Auteur) Relative positioning using multi-GNSS (global navigation satellite systems) can improve accuracy, reliability, and availability compared to the use of a single constellation system. Intra-system double-difference (DD) ambiguities (ISDDAs) refer to the DD ambiguities between satellites of a single constellation system and can be fixed to an integer to derive the precise fixed solution. Inter-system ambiguities, which denote the DD ambiguities between different constellation systems, can also be fixed to integers on overlapping frequencies, once the inter-system bias (ISB) is removed. Compared with fixing ISDDAs, fixing both integer intra- and inter-system DD ambiguities (IIDDAs) means an increase of positioning precision through an integration of multiple GNSS constellations. Previously, researchers have studied IIDDA fixing with systems of the same frequencies, but not with systems of different frequencies. Integer IIDDAs can be determined from single-difference (SD) ambiguities, even if the frequencies of multi-GNSS signals used in the positioning are different. In this study, we investigated IIDDA fixing for multi-GNSS signals of narrowly spaced frequencies. First, the inter-system DD models of multi-GNSS signals of different frequencies are introduced, and the strategy for compensating for ISB is presented. The ISB is decomposed into three parts: 1) a float approximate ISB number that can be considered equal to the ISB of code pseudorange observations and thus can be estimated through single point positioning (SPP); 2) a number that is a multiple of the GNSS signal wavelength; and 3) a fractional ISB part, with a magnitude smaller than a single wavelength. Then, the relationship between intra- and inter-system DD ambiguity RATIO values and ISB was investigated by integrating GPS L1 and GLONASS L1 signals. In our numerical analyses with short baselines, the ISB parameter and IIDDA were successfully fixed, even if the number of observed satellites in each system was small. Numéro de notice : A2018-456 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1100-4 Date de publication en ligne : 14/12/2017 En ligne : https://doi.org/10.1007/s00190-017-1100-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91053
in Journal of geodesy > vol 92 n° 8 (August 2018) . - pp 873 - 887[article]Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination / Zhouzheng Gao in GPS solutions, vol 22 n° 3 (July 2018)
[article]
Titre : Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination Type de document : Article/Communication Auteurs : Zhouzheng Gao, Auteur ; Maorong Ge, Auteur ; You Li, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] centrale inertielle
[Termes IGN] données BeiDou
[Termes IGN] données Galileo
[Termes IGN] données GLONASS
[Termes IGN] données GNSS
[Termes IGN] données GPS
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] odomètre
[Termes IGN] orientation du capteur
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnementRésumé : (Auteur) To upgrade the positioning accuracy, re-initialization speed, and attitude determination performance of precise point positioning (PPP) in dynamic applications, we proposed a multi-sensor fusion system consisting of four global navigation satellite systems (GNSSs), namely GPS, BDS, Galileo, and GLONASS, several low-cost inertial sensors, and an odometer. The study shows that the performance of PPP in terms of continuity, reliability, stability, and re-initialization speed improves by such a multi-sensor fusion system. This manifests itself in a significantly increased accuracy. For position solutions, compared to un-aided PPP solutions, the improvements achieved using low-cost inertial navigation system (INS) are about 36.4, 38.7, and 31.3% in the north, east, and vertical components, respectively, and the improvement using odometer are about 1.58, 0.35, and 4.32% relative to the INS-aided PPP solutions. Moreover, using the odometer can provide more than 2.1, 1.4, and 50.6% attitude improvements for roll, pitch, and heading angles compared to the attitude solutions obtained from the INS-aided PPP system. Under GNSS outage conditions, the mean position improvements using the odometer are about 2.3, 1.8, and 8.7%, with maximum increases of 74.6, 74.7, and 28.3%, and the average attitude improvements are about 4.7, 5.4, and 3.3%, with maximum increases of 36.4, 31.7, and 28.9%, respectively. This means that the odometer can enhance the performance of PPP and PPP/INS integration in challenging dynamic conditions. Numéro de notice : A2018-375 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-018-0725-y Date de publication en ligne : 05/04/2018 En ligne : https://doi.org/10.1007/s10291-018-0725-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90779
in GPS solutions > vol 22 n° 3 (July 2018)[article]Ionospheric and receiver DCB-constrained multi-GNSS single-frequency PPP integrated with MEMS inertial measurements / Zhouzheng Gao in Journal of geodesy, vol 91 n° 11 (November 2017)PermalinkParticle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution / Yumiao Tian in Journal of geodesy, vol 89 n° 11 (november 2015)PermalinkEstimating the yaw-attitude of an BDS IGSO and MEO satellites / Xiaolei Dai in Journal of geodesy, vol 89 n° 10 (october 2015)PermalinkAccuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo / Xinging Li in Journal of geodesy, vol 89 n° 6 (June 2015)PermalinkAn enhanced strategy for GNSS data processing of massive networks / H. Chen in Journal of geodesy, vol 88 n° 9 (September 2014)PermalinkReal-time precise point positioning regional augmentation for large GPS reference networks / Xinging Li in GPS solutions, vol 18 n° 1 (january 2014)PermalinkA method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning / Xinging Li in Journal of geodesy, vol 87 n° 5 (May 2013)Permalink