Détail de l'auteur
Auteur Hao Wu |
Documents disponibles écrits par cet auteur (7)



Trajectory and image-based detection and identification of UAV / Yicheng Liu in The Visual Computer, vol 37 n° 7 (July 2021)
![]()
[article]
Titre : Trajectory and image-based detection and identification of UAV Type de document : Article/Communication Auteurs : Yicheng Liu, Auteur ; Luchuan Liao, Auteur ; Hao Wu, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] Aves
[Termes IGN] caméra de surveillance PTZ
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] drone
[Termes IGN] forme caractéristique
[Termes IGN] interférence
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formes
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) Much more attentions have been attracted to the inspection and prevention of unmanned aerial vehicle (UAV) in the wake of increasing high frequency of security accident. Many factors like the interferences and the small fuselage of UAV pose challenges to the timely detection of the UAV. In our work, we present a system that is capable of detecting, recognizing, and tracking an UAV using single camera automatically. For our method, a single pan–tilt–zoom (PTZ) camera detects flying objects and gets their trajectories; then, the trajectory identified as a UAV guides the camera and PTZ to capture the detailed region image of the target. Therefore, the images can be classified into the UAV and interference classes (such as birds) by the convolution neural network classifier trained with our image dataset. For the target recognized as a UAV with the double verification, the radio jammer emits the interferential radio to disturb its control radio and GPS. This system could be applied in some complex environment where many birds and UAV appear simultaneously. Numéro de notice : A2021-541 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01937-y Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01937-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98020
in The Visual Computer > vol 37 n° 7 (July 2021)[article]Fine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method / Zhenzhong Peng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : Fine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method Type de document : Article/Communication Auteurs : Zhenzhong Peng, Auteur ; Ru Wang, Auteur ; Lingbo Liu, Auteur ; Hao Wu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] bati
[Termes IGN] densité de population
[Termes IGN] diagramme de Voronoï
[Termes IGN] distribution spatiale
[Termes IGN] données démographiques
[Termes IGN] espace urbain
[Termes IGN] modèle de régression
[Termes IGN] modèle dynamique
[Termes IGN] petite échelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] téléphone intelligentRésumé : (auteur) Fine-scale population mapping is of great significance for capturing the spatial and temporal distribution of the urban population. Compared with traditional census data, population data obtained from mobile phone data has high availability and high real-time performance. However, the spatial distribution of base stations is uneven, and the service boundaries remain uncertain, which brings significant challenges to the accuracy of dasymetric population mapping. This paper proposes a Grid Voronoi method to provide reliable spatial boundaries for base stations and to build a subsequent regression based on mobile phone and building use data. The results show that the Grid Voronoi method gives high fitness in building use regression, and further comparison between the traditional ordinary least squares (OLS) regression model and geographically weighted regression (GWR) model indicates that the building use data can well reflect the heterogeneity of urban geographic space. This method provides a relatively convenient and reliable idea for capturing high-precision population distribution, based on mobile phone and building use data. Numéro de notice : A2020-315 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060344 Date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.3390/ijgi9060344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95170
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 16 p.[article]Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
![]()
[article]
Titre : Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Zhen Li, Auteur ; Keith C. Clarke, Auteur ; Wenzhong Shi, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1040 - 1061 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de Markov
[Termes IGN] simulationRésumé : (Auteur) Understanding the spatial scale sensitivity of cellular automata is crucial for improving the accuracy of land use change simulation. We propose a framework based on a response surface method to comprehensively explore spatial scale sensitivity of the cellular automata Markov chain (CA-Markov) model, and present a hybrid evaluation model for expressing simulation accuracy that merges the strengths of the Kappa coefficient and of Contagion index. Three Landsat-Thematic Mapper remote sensing images of Wuhan in 1987, 1996, and 2005 were used to extract land use information. The results demonstrate that the spatial scale sensitivity of the CA-Markov model resulting from individual components and their combinations are both worthy of attention. The utility of our proposed hybrid evaluation model and response surface method to investigate the sensitivity has proven to be more accurate than the single Kappa coefficient method and more efficient than traditional methods. The findings also show that the CA-Markov model is more sensitive to neighborhood size than to cell size or neighborhood type considering individual component effects. Particularly, the bilateral and trilateral interactions between neighborhood and cell size result in a more remarkable scale effect than that of a single cell size. Numéro de notice : A2019-443 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1568441 Date de publication en ligne : 18/02/2019 En ligne : https://doi.org/10.1080/13658816.2019.1568441 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92777
in International journal of geographical information science IJGIS > Vol 33 n° 5-6 (May - June 2019) . - pp 1040 - 1061[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019051 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019052 RAB Revue Centre de documentation En réserve 3L Disponible Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification / Hao Wu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
![]()
[article]
Titre : Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Saurabh Prasad, Auteur Année de publication : 2016 Article en page(s) : pp 4882 - 4895 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] problème de DirichletRésumé : (Auteur) Active learning is an area of significant ongoing research interest for the classification of remotely sensed data, where obtaining efficient training data is both time consuming and expensive. The goal of active learning is to achieve high classification performance by querying as few samples as possible from a large unlabeled data pool. Traditional active learning frameworks all assume the existence of labeled samples for all classes of interest. However, in real-world applications, the unlabeled data pool may contain data from unknown classes that we are not aware of in advance, and a quick detection of them is useful for enriching our training set. In this scenario, traditional active learning methods may not effectively and rapidly detect the unknown classes. We proposed an active learning framework which provides robust classification performance with minimum manual labeling effort while simultaneously discovering unknown (missing) classes. The discovery of unknown classes is particularly suited to an active learning framework where an annotator is in the loop. A Dirichlet process mixture model is utilized in our proposed method to cluster the labeled and unlabeled samples as a whole. If unknown classes exist, they will emerge as new clusters which are different from other existing clusters occupied by known classes, and then, the proposed query strategy will give priority to querying samples in the new clusters. We present experimental results with hyperspectral data to show that our method provides better classification performance compared to existing active learning methods with or without unknown classes. Numéro de notice : A2016-892 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2552507 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2552507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83072
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4882 - 4895[article]Double constrained NMF for hyperspectral unmixing / Xiaoqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)
![]()
[article]
Titre : Double constrained NMF for hyperspectral unmixing Type de document : Article/Communication Auteurs : Xiaoqiang Lu, Auteur ; Hao Wu, Auteur ; Yuan Yuan, Auteur Année de publication : 2014 Article en page(s) : pp 2746 - 2758 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] contrainte spectrale
[Termes IGN] factorisation
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectraleRésumé : (Auteur) Given only the collected hyperspectral data, unmixing aims at obtaining the latent constituent materials and their corresponding fractional abundances. Recently, many nonnegative matrix factorization (NMF)-based algorithms have been developed to deal with this issue. Considering that the abundances of most materials may be sparse, the sparseness constraint is intuitively introduced into NMF. Although sparse NMF algorithms have achieved advanced performance in unmixing, the result is still susceptible to unstable decomposition and noise corruption. To reduce the aforementioned drawbacks, the structural information of the data is exploited to guide the unmixing. Since similar pixel spectra often imply similar substance constructions, clustering can explicitly characterize this similarity. Through maintaining the structural information during the unmixing, the resulting fractional abundances by the proposed algorithm can well coincide with the real distributions of constituent materials. Moreover, the additional clustering-based regularization term also lessens the interference of noise to some extent. The experimental results on synthetic and real hyperspectral data both illustrate the superiority of the proposed method compared with other state-of-the-art algorithms. Numéro de notice : A2014-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2265322 En ligne : https://doi.org/10.1109/TGRS.2013.2265322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33166
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 5 tome 1 (May 2014) . - pp 2746 - 2758[article]Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014051A RAB Revue Centre de documentation En réserve 3L En circulation
Exclu du prêtTemporal logic and operation relations based knowledge representation for land cover change web services / Jun Chen in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)
PermalinkManifold regularized sparse NMF for hyperspectral unmixing / Xiaqiang Lu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 5 Tome 1 (May 2013)
Permalink