Détail de l'auteur
Auteur Barbara P. Buttenfield |
Documents disponibles écrits par cet auteur (19)



Classifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks / Lauwrence V. Stanislawski in International journal of cartography, Vol 6 n° 1 (March 2020)
![]()
[article]
Titre : Classifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks Type de document : Article/Communication Auteurs : Lauwrence V. Stanislawski, Auteur ; Michael P. Finn, Auteur ; Barbara P. Buttenfield, Auteur Année de publication : 2020 Article en page(s) : pp 4 - 21 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de généralisation
[Termes IGN] altitude
[Termes IGN] base de données hydrographiques
[Termes IGN] cartographie des flux
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] cours d'eau
[Termes IGN] drainage
[Termes IGN] Etats-Unis
[Termes IGN] pente
[Termes IGN] perméabilité du sol
[Termes IGN] représentation multiple
[Termes IGN] réseau hydrographique
[Termes IGN] ruissellement
[Termes IGN] segmentation
[Termes IGN] traitement automatique de données
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Automated generalization software must accommodate multi-scale representations of hydrographic networks across a variety of geographic landscapes, because scale-related hydrography differences are known to vary in different physical conditions. While generalization algorithms have been tailored to specific regions and landscape conditions by several researchers in recent years, the selection and characterization of regional conditions have not been formally defined nor statistically validated. This paper undertakes a systematic classification of landscape types in the conterminous United States to spatially subset the country into workable units, in preparation for systematic tailoring of generalization workflows that preserve hydrographic characteristics. The classification is based upon elevation, standard deviation of elevation, slope, runoff, drainage and bedrock density, soil and bedrock permeability, area of inland surface water, infiltration-excess of overland flow, and a base flow index. A seven class solution shows low misclassification rates except in areas of high landscape diversity such as the Appalachians, Rocky Mountains, and Western coastal regions. Numéro de notice : A2020-070 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2018.1443759 Date de publication en ligne : 20/03/2018 En ligne : https://doi.org/10.1080/23729333.2018.1443759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94632
in International journal of cartography > Vol 6 n° 1 (March 2020) . - pp 4 - 21[article]Partial polygon pruning of hydrographic features in automated generalization / Alexander K. Stum in Transactions in GIS, vol 21 n° 5 (October 2017)
![]()
[article]
Titre : Partial polygon pruning of hydrographic features in automated generalization Type de document : Article/Communication Auteurs : Alexander K. Stum, Auteur ; Barbara P. Buttenfield, Auteur ; Lauwrence V. Stanislawski, Auteur Année de publication : 2017 Article en page(s) : pp 1061–1078 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] base de données hydrographiques
[Termes IGN] détection automatique
[Termes IGN] Etats-Unis
[Termes IGN] généralisation automatique de données
[Termes IGN] petite échelle
[Termes IGN] polygone
[Termes IGN] rendu (géovisualisation)
[Termes IGN] simplification de contour
[Termes IGN] traitement automatique de données
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) This article demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are sensitive to scale change, therefore multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features – such as long, sinuous reservoir arms, stream channels too narrow at the target scale, and islands that begin to coalesce – entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the US Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This article describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the US. Numéro de notice : A2017-634 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12270 En ligne : http://dx.doi.org/10.1111/tgis.12270 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86953
in Transactions in GIS > vol 21 n° 5 (October 2017) . - pp 1061–1078[article]An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States / Jochen Wendel in Cartography and Geographic Information Science, Vol 43 n° 3 (June 2016)
![]()
[article]
Titre : An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States Type de document : Article/Communication Auteurs : Jochen Wendel, Auteur ; Barbara P. Buttenfield, Auteur ; Lauwrence V. Stanislawski, Auteur Année de publication : 2016 Article en page(s) : pp 233 - 249 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] classification dirigée
[Termes IGN] classification non dirigée
[Termes IGN] données hydrographiques
[Termes IGN] Etats-Unis
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] intégration de données
[Termes IGN] système d'information géographiqueRésumé : (Auteur) Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification. Numéro de notice : A2016-166 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15230406.2015.1067829 En ligne : https://doi.org/10.1080/15230406.2015.1067829 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80472
in Cartography and Geographic Information Science > Vol 43 n° 3 (June 2016) . - pp 233 - 249[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016031 RAB Revue Centre de documentation En réserve 3L Disponible Exploring the impact of dasymetric refinement on spatiotemporal small area estimates / Barbara P. Buttenfield in Cartography and Geographic Information Science, Vol 42 n° 5 (November 2015)
![]()
[article]
Titre : Exploring the impact of dasymetric refinement on spatiotemporal small area estimates Type de document : Article/Communication Auteurs : Barbara P. Buttenfield, Auteur ; Matt Ruther, Auteur ; Stefan Leyk, Auteur Année de publication : 2015 Article en page(s) : pp 449 - 459 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] démographie
[Termes IGN] données spatiotemporelles
[Termes IGN] figuration de la densité
[Termes IGN] interpolation
[Termes IGN] méthodologieRésumé : (Auteur) Comparing demographic small area estimates across multiple time periods is hindered by boundary changes in census enumeration units. Areal interpolation can resolve temporal incompatibilities, but underlying assumptions of uniform population density within units is sometimes flawed and results in distorted estimates. Dasymetric modeling refines spatial precision by limiting areal interpolation to the most likely residential areas. Here, a systematic examination of the impacts of dasymetric refinement on temporal interpolation accuracy compares errors that emerge as a consequence of differing time spans. This paper compares the accuracy of three commonly utilized methods of areal interpolation for temporal analysis of population data over the 1990–2010 decades. It examines whether multi-temporal dasymetric refinement prior to areal interpolation improves the accuracy of small area estimates, comparing two different demographic contexts. Data sets include tract-level demography exhibiting dramatic growth (Las Vegas, Nevada), and relative stability (Pittsburgh, Pennsylvania). Areal interpolation with and without the dasymetric refinement is validated using block level data. The dasymetrically refined target density weighting (TDW) provides the overall best performance for the 2000 source data and the expectation maximization (EM) method gives the overall best performance for the 1990 source data; effects of refinement are more prominent in areas of faster population change. Numéro de notice : A2015-561 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2015.1065206 En ligne : https://doi.org/10.1080/15230406.2015.1065206 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77604
in Cartography and Geographic Information Science > Vol 42 n° 5 (November 2015) . - pp 449 - 459[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2015051 RAB Revue Centre de documentation En réserve 3L Disponible A rapid approach for automated comparison of independently derived stream networks / Lauwrence V. Stanislawski in Cartography and Geographic Information Science, Vol 42 n° 5 (November 2015)
![]()
[article]
Titre : A rapid approach for automated comparison of independently derived stream networks Type de document : Article/Communication Auteurs : Lauwrence V. Stanislawski, Auteur ; Barbara P. Buttenfield, Auteur ; Ariel Doumbouya, Auteur Année de publication : 2015 Article en page(s) : pp 435 - 448 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] base de données hydrographiques
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des flux
[Termes IGN] modélisation spatiale
[Termes IGN] réseau hydrographiqueRésumé : (Auteur) This paper presents an improved coefficient of line correspondence (CLC) metric for automatically assessing the similarity of two different sets of linear features. Elevation-derived channels at 1:24,000 scale (24K) are generated from a weighted flow-accumulation model and compared to 24K National Hydrography Dataset (NHD) flowlines. The CLC process conflates two vector datasets through a raster line-density differencing approach that is faster and more reliable than earlier methods. Methods are tested on 30 subbasins distributed across different terrain and climate conditions of the conterminous United States. CLC values for the 30 subbasins indicate 44–83% of the features match between the two datasets, with the majority of the mismatching features comprised of first-order features. Relatively lower CLC values result from subbasins with less than about 1.5 degrees of slope. The primary difference between the two datasets may be explained by different data capture criteria. First-order, headwater tributaries derived from the flow-accumulation model are captured more comprehensively through drainage area and terrain conditions, whereas capture of headwater features in the NHD is cartographically constrained by tributary length. The addition of missing headwaters to the NHD, as guided by the elevation-derived channels, can substantially improve the scientific value of the NHD. Numéro de notice : A2015-560 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2015.1060869 En ligne : https://doi.org/10.1080/15230406.2015.1060869 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77602
in Cartography and Geographic Information Science > Vol 42 n° 5 (November 2015) . - pp 435 - 448[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2015051 RAB Revue Centre de documentation En réserve 3L Disponible Abstracting geographic information in a data rich world, ch. 11. Generalisation in practice within national mapping agencies / Cécile Duchêne (2014)
PermalinkAutomated thinning of road networks and road labels for multiscale design of The National Map of the United States / Cynthia A. Brewer in Cartography and Geographic Information Science, vol 40 n° 4 (September 2013)
PermalinkModeling ambiguity in census microdata allocations to improve demographic small area estimates / Stefan Leyk in Transactions in GIS, vol 17 n° 3 (June 2013)
PermalinkMastering map : scale balancing workloads display and geometry change in multi-scale mapping / Cynthia A. Brewer in Geoinformatica, vol 14 n° 2 (April 2010)
PermalinkFraming guidelines for multi-scale map design using databases at multiple resolutions / Cynthia A. Brewer in Cartography and Geographic Information Science, vol 34 n° 1 (January 2007)
PermalinkAn information model for maps: Towards cartographic production from GIS databases / Aileen Buckley (2005)
PermalinkGuidelines for the display of attribute certainty / Michael Leitner in Cartography and Geographic Information Science, vol 27 n° 1 (January 2000)
PermalinkLooking forward: geographic information services and libraries in the future / Barbara P. Buttenfield in Cartography and geographic information systems, vol 25 n° 3 (July 1998)
PermalinkWorkshop on progress in automated map generalization, ICC 1995, 1 - 3 September 1995, Barcelona, Spain / Barbara P. Buttenfield (1995)
Permalinkvol 30 n° 2-3 - June 1993 - Mapping data quality : collection of essays (Bulletin de Cartographica) / Barbara P. Buttenfield
Permalink