Détail de l'auteur
Auteur Silvia Valero |
Documents disponibles écrits par cet auteur



On the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
![]()
Titre : On the joint exploitation of optical and SAR satellite imagery for grassland monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. XLIII-B3-2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 591 - 598 Format : 21 x 30 cm Note générale : bibliographie
This research has been funded by the Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) and the Centre National d’Etudes Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Time series of optical and Synthetic Aperture RADAR (SAR) images provide complementary knowledge about the cover and use of the Earth surface since they exhibit information of distinct physical nature. They have proved to be particularly relevant for monitoring large areas with high temporal dynamics and related to significant ecosystem services. Grasslands are such crucial surfaces, both in terms of economic and environmental issues and the automatic and frequent monitoring of their agricultural practices is required for many purposes. To address this problem, the deep-based SenDVI framework is presented. SenDVI proposes an object-based methodology to estimate NDVI values from Sentinel-1 SAR observations and contextual knowledge (weather, terrain). Values are regressed every 6 days for compliance with monitoring purposes. Very satisfactory results are obtained with this low-level multimodal fusion strategy (R 2 =0.84 on a Sentinel-2 tile). Finer analysis is however required to fully assess the relevance of each modality (Sentinel-1, Sentinel-2, weather, terrain) and feature sets and to propose the simplest conceivable framework. Results show that not all features are necessary and can be discarded while others have a mandatory contribution to the regression task. Moreover, experiments prove that accuracy can be improved by not saturating the network with non-essential information (among contextual knowledge in particular). This allows to move towards more operational solution. Numéro de notice : C2020-004 Affiliation des auteurs : LaSTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-591-2020 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95664 Challenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
![]()
Titre : Challenges in grassland mowing event detection with multimodal Sentinel images Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Sébastien Giordano
, Auteur ; Silvia Valero, Auteur ; Clément Mallet
, Auteur
Congrès : MultiTemp 2019, 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (5 - 7 août 2019; Shanghai, Chine), Commanditaire Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Importance : pp 1 - 4 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] détection d'événement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] nébulosité
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] prairie
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Permanent Grasslands (PG) are heterogeneous environments with high spatial and temporal dynamics, subject to increasing environmental challenges. This study aims to identify requirements, key constraining factors and solutions for robust and complete detection of Mowing Events. Remote sensing is a powerful tool to monitor and investigate Near-Real-Time and seasonally PG cover. Here, pros and cons of Sentinel-2 (S2) and Sentinel-1 (S1) time series exploitation for Mowing Events (MowEve) detection are analysed. A deep-based approach is proposed to obtain consistent and homogeneous biophysical parameter times series for MowEve detection. Recurrent Neural Networks are proposed as regression strategy allowing the synergistic integration of optical and Synthetic Aperture Radar data to reconstruct dense NDVI times series. Experimental results corroborates the interest of deriving consistent and homogeneous series of biophysical parameters for subsequent MowEve detection. Numéro de notice : C2019-028 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/Multi-Temp.2019.8866914 date de publication en ligne : 29/11/2019 En ligne : https://doi.org/10.1109/Multi-Temp.2019.8866914 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94538 Effect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)
![]()
[article]
Titre : Effect of training class label noise on classification performances for land cover mapping with satellite image time series Type de document : Article/Communication Auteurs : Charlotte Pelletier, Auteur ; Silvia Valero, Auteur ; Jordi Inglada, Auteur ; Nicolas Champion , Auteur ; Claire Marais-Sicre, Auteur ; Gérard Dedieu, Auteur
Année de publication : 2017 Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base de données d'occupation du sol
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image SPOT 4
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Supervised classification systems used for land cover mapping require accurate reference databases. These reference data come generally from different sources such as field measurements, thematic maps, or aerial photographs. Due to misregistration, update delay, or land cover complexity, they may contain class label noise, i.e., a wrong label assignment. This study aims at evaluating the impact of mislabeled training data on classification performances for land cover mapping. Particularly, it addresses the random and systematic label noise problem for the classification of high resolution satellite image time series. Experiments are carried out on synthetic and real datasets with two traditional classifiers: Support Vector Machines (SVM) and Random Forests (RF). A synthetic dataset has been designed for this study, simulating vegetation profiles over one year. The real dataset is composed of Landsat-8 and SPOT-4 images acquired during one year in the south of France. The results show that both classifiers are little influenced for low random noise levels up to 25%–30%, but their performances drop down for higher noise levels. Different classification configurations are tested by increasing the number of classes, using different input feature vectors, and changing the number of training instances. Algorithm complexities are also analyzed. The RF classifier achieves high robustness to random and systematic label noise for all the tested configurations; whereas the SVM classifier is more sensitive to the kernel choice and to the input feature vectors. Finally, this work reveals that the cross-validation procedure is impacted by the presence of class label noise. Numéro de notice : A2017-896 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : doi.org/10.3390/rs9020173 date de publication en ligne : 18/02/2017 En ligne : https://doi.org/10.3390/rs9020173 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91880
in Remote sensing > vol 9 n° 2 (February 2017) . - pp 1 - 24[article]Cartographie de l'occupation des sols à partir de séries temporelles d'images satellitaires à hautes résolutions : identification et traitement des données mal étiquetées / Charlotte Pelletier (2017)
![]()
Titre : Cartographie de l'occupation des sols à partir de séries temporelles d'images satellitaires à hautes résolutions : identification et traitement des données mal étiquetées Type de document : Thèse/HDR Auteurs : Charlotte Pelletier, Auteur ; Gérard Dedieu, Directeur de thèse ; Silvia Valero, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2017 Importance : 289 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université Paul Sabatier de ToulouseLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] erreur de classification
[Termes descripteurs IGN] étiquette de classe
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image SPOT
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection spatialeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'étude des surfaces continentales est devenue ces dernières années un enjeu majeur à l'échelle mondiale pour la gestion et le suivi des territoires, notamment en matière de consommation des terres agricoles et d'étalement urbain. Dans ce contexte, les cartes d'occupation du sol caractérisant la couverture biophysique des terres émergées jouent un rôle essentiel pour la cartographie des surfaces continentales. La production de ces cartes sur de grandes étendues s'appuie sur des données satellitaires qui permettent de photographier les surfaces continentales fréquemment et à faible coût. Le lancement de nouvelles constellations satellitaires - Landsat-8 et Sentinel-2 - permet depuis quelques années l'acquisition de séries temporelles à hautes résolutions. Ces dernières sont utilisées dans des processus de classification supervisée afin de produire les cartes d'occupation du sol. L'arrivée de ces nouvelles données ouvre de nouvelles perspectives, mais questionne sur le choix des algorithmes de classification et des données à fournir en entrée du système de classification. Outre les données satellitaires, les algorithmes de classification supervisée utilisent des échantillons d'apprentissage pour définir leur règle de décision. Dans notre cas, ces échantillons sont étiquetés, \ie{} la classe associée à une occupation des sols est connue. Ainsi, la qualité de la carte d'occupation des sols est directement liée à la qualité des étiquettes des échantillons d'apprentissage. Or, la classification sur de grandes étendues nécessite un grand nombre d'échantillons, qui caractérise la diversité des paysages. Cependant, la collecte de données de référence est une tâche longue et fastidieuse. Ainsi, les échantillons d'apprentissage sont bien souvent extraits d'anciennes bases de données pour obtenir un nombre conséquent d'échantillons sur l'ensemble de la surface à cartographier. Cependant, l'utilisation de ces anciennes données pour classer des images satellitaires plus récentes conduit à la présence de nombreuses données mal étiquetées parmi les échantillons d'apprentissage. Malheureusement, l'utilisation de ces échantillons mal étiquetés dans le processus de classification peut engendrer des erreurs de classification, et donc une détérioration de la qualité de la carte produite. L'objectif général de la thèse vise à améliorer la classification des nouvelles séries temporelles d'images satellitaires à hautes résolutions. Le premier objectif consiste à déterminer la stabilité et la robustesse des méthodes de classification sur de grandes étendues. Plus particulièrement, les travaux portent sur l'analyse d'algorithmes de classification et la sensibilité de ces algorithmes vis-à-vis de leurs paramètres et des données en entrée du système de classification. De plus, la robustesse de ces algorithmes à la présence des données imparfaites est étudiée. Le second objectif s'intéresse aux erreurs présentes dans les données d'apprentissage, connues sous le nom de données mal étiquetées. Dans un premier temps, des méthodes de détection de données mal étiquetées sont proposées et étudiées. Dans un second temps, un cadre méthodologique est proposé afin de prendre en compte les données mal étiquetées dans le processus de classification. L'objectif est de réduire l'influence des données mal étiquetées sur les performances de l'algorithme de classification, et donc d'améliorer la carte d'occupation des sols produite. Note de contenu : 1- Introduction
2- Méthodes et données
3- Stabilité et robustesse des algorithmes de classification
4- Détection des données mal étiquetées
5- ConclusionNuméro de notice : 25734 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et interfaces continentales, Hydrologie : Toulouse 3 : 2017 Organisme de stage : Centre d’Études Spatiales de la Biosphère (CESBIO) En ligne : http://www.theses.fr/2017TOU30241 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94923 New iterative learning strategy to improve classification systems by using outlier detection techniques / Charlotte Pelletier (2017)
![]()
Titre : New iterative learning strategy to improve classification systems by using outlier detection techniques Type de document : Article/Communication Auteurs : Charlotte Pelletier, Auteur ; Silvia Valero, Auteur ; Jordi Inglada, Auteur ; Gérard Dedieu, Auteur ; Nicolas Champion , Auteur
Congrès : IGARSS 2017, IEEE International Geoscience And Remote Sensing Symposium (23 - 28 juillet 2017; Fort Worth, Texas - Etats-Unis) , Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2017 Importance : pp 3676 - 3679 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] détection d'anomalie
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] valeur aberranteRésumé : (auteur) The supervised classification of satellite image time series allows obtaining reliable land cover maps over large areas. However, their quality depends on the reference datasets used for training the classifier. In remote sensing, reference data may lack of timeliness and accuracy which leads to the presence of mislabeled data degrading the classification performances. This work presents an iterative learning framework to deal with noisy instances, that can be seen as outliers. Several outlier detection strategies, based on the well-known Random Forests (RF) ensemble classifier, are proposed, evaluated quantitatively, and then compared with traditional methods. Experimental results have been carried out by using synthetic and real datasets representing annual vegetation profiles. Numéro de notice : C2017-042 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2017.8127796 date de publication en ligne : 04/12/2017 En ligne : https://doi.org/10.1109/IGARSS.2017.8127796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91925 Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)
PermalinkSegmentation hyperspectrale de forêts tropicales par arbres de partition binaires / Guillaume Tochon in Revue Française de Photogrammétrie et de Télédétection, n° 202 (Avril 2013)
Permalink