Détail de l'auteur
Auteur Silvia Valero |
Documents disponibles écrits par cet auteur (12)



Recurrent-based regression of Sentinel time series for continuous vegetation monitoring / Anatol Garioud in Remote sensing of environment, vol 263 (15 September 2021)
![]()
[article]
Titre : Recurrent-based regression of Sentinel time series for continuous vegetation monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Année de publication : 2021 Projets : 3-projet - voir note / Article en page(s) : n° 112419 Note générale : bibliographie
This work is funded by the Agence de la transition écologique (ADEME) and the Centre National d'Études Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Dense time series of optical satellite imagery describing vegetation activity provide essential information for the efficient and regular monitoring of vegetation. Nevertheless, the temporal resolution of optical sensors is strongly affected by cloud cover, resulting in significant missing information. The use of complementary acquisitions, such as Synthetic Aperture Radar (SAR) data, opens the door to the development of new multi-sensor methodologies aiming at the reconstruction of missing information. However, the joint exploitation of new radar and optical missions, such as the Sentinel, raises new challenges given the different nature and response of the two data sources. In this work, the SenRVM methodology is proposed as a new multi-sensor approach to regress SAR time series towards Normalized Difference Vegetation Index (NDVI). A deep Recurrent Neural Network architecture which integrates SAR acquisitions and ancillary data is adopted. The regression task permits a continuous optical temporal resolution of 6 days. Multiple experiments are carried out to assess the SenRVM framework by studying two large-scale areas in France. Through an extensive interpretation of the results, SenRVM is evaluated on three main vegetation types (grasslands, crops, and forests). High accurate results (R2 > 0.83 and MAE Numéro de notice : A2021-499 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2021.112419 Date de publication en ligne : 25/06/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98004
in Remote sensing of environment > vol 263 (15 September 2021) . - n° 112419[article]Assessing the interest of a multi-modal gap-filling strategy for monitoring changes in grassland parcels / Anatol Garioud (2021)
![]()
Titre : Assessing the interest of a multi-modal gap-filling strategy for monitoring changes in grassland parcels Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Clément Mallet
, Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : IGARSS 2021, IEEE International Geoscience And Remote Sensing Symposium 11/07/2021 16/07/2021 Bruxelles Belgique Proceedings IEEE Importance : pp 3105 - 3108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection de changement
[Termes IGN] image Sentinel-SAR
[Termes IGN] parcelle agricole
[Termes IGN] prairie
[Termes IGN] régression multiple
[Termes IGN] série temporelleRésumé : (auteur) One key factor to exhaustive vegetation monitoring lies in the dense temporal sampling of the measurements. Areas subject to multiple human interventions, such as grasslands, are particularly concerned. A Recurrent Neural Network multi-sensor regression approach (SenRVM), relying on the systematic acquisitions of Sentinel-1 SAR satellite, has been thereby proposed. It permits to retrieve vegetation indexes, derived from Sentinel-2 optical imagery, despite significant cloud cover and with high sampling (6 days). The benefit of SenRVM for filling gaps in vegetation time-series describing agricultural practices is assessed. The proposed approach is compared with classical mono-sensor optical strategies. We adopt a synthetic dataset with large gaps. This realistically mimicks challenging conditions in grassland exploitation detection. Results obtained both for exploited and stable parcels satisfactorily demonstrate the relevance of our approach. Numéro de notice : C2021-042 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS47720.2021.9554995 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.1109/IGARSS47720.2021.9554995 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99413 On the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
![]()
Titre : On the joint exploitation of optical and SAR satellite imagery for grassland monitoring Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3-2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : pp 591 - 598 Format : 21 x 30 cm Note générale : bibliographie
This research has been funded by the Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) and the Centre National d’Etudes Spatiales (CNES).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prairie
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Time series of optical and Synthetic Aperture RADAR (SAR) images provide complementary knowledge about the cover and use of the Earth surface since they exhibit information of distinct physical nature. They have proved to be particularly relevant for monitoring large areas with high temporal dynamics and related to significant ecosystem services. Grasslands are such crucial surfaces, both in terms of economic and environmental issues and the automatic and frequent monitoring of their agricultural practices is required for many purposes. To address this problem, the deep-based SenDVI framework is presented. SenDVI proposes an object-based methodology to estimate NDVI values from Sentinel-1 SAR observations and contextual knowledge (weather, terrain). Values are regressed every 6 days for compliance with monitoring purposes. Very satisfactory results are obtained with this low-level multimodal fusion strategy (R 2 =0.84 on a Sentinel-2 tile). Finer analysis is however required to fully assess the relevance of each modality (Sentinel-1, Sentinel-2, weather, terrain) and feature sets and to propose the simplest conceivable framework. Results show that not all features are necessary and can be discarded while others have a mandatory contribution to the regression task. Moreover, experiments prove that accuracy can be improved by not saturating the network with non-essential information (among contextual knowledge in particular). This allows to move towards more operational solution. Numéro de notice : C2020-004 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-591-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-591-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95664 Challenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
![]()
Titre : Challenges in grassland mowing event detection with multimodal Sentinel images Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Sébastien Giordano
, Auteur ; Silvia Valero, Auteur ; Clément Mallet
, Auteur
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : MultiTemp 2019, 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images 05/08/2019 07/08/2019 Shanghai Chine Proceedings IEEE Importance : pp 1 - 4 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] détection d'événement
[Termes IGN] données lidar
[Termes IGN] image multibande
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TerraSAR-X
[Termes IGN] méthode robuste
[Termes IGN] nébulosité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Perceptron multicouche
[Termes IGN] prairie
[Termes IGN] régression
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) Permanent Grasslands (PG) are heterogeneous environments with high spatial and temporal dynamics, subject to increasing environmental challenges. This study aims to identify requirements, key constraining factors and solutions for robust and complete detection of Mowing Events. Remote sensing is a powerful tool to monitor and investigate Near-Real-Time and seasonally PG cover. Here, pros and cons of Sentinel-2 (S2) and Sentinel-1 (S1) time series exploitation for Mowing Events (MowEve) detection are analysed. A deep-based approach is proposed to obtain consistent and homogeneous biophysical parameter times series for MowEve detection. Recurrent Neural Networks are proposed as regression strategy allowing the synergistic integration of optical and Synthetic Aperture Radar data to reconstruct dense NDVI times series. Experimental results corroborates the interest of deriving consistent and homogeneous series of biophysical parameters for subsequent MowEve detection. Numéro de notice : C2019-028 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/Multi-Temp.2019.8866914 Date de publication en ligne : 29/11/2019 En ligne : https://doi.org/10.1109/Multi-Temp.2019.8866914 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94538 Joint analysis of SAR and optical satellite images time series for grassland event detection / Anatol Garioud (2019)
Titre : Joint analysis of SAR and optical satellite images time series for grassland event detection Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Sébastien Giordano
, Auteur ; Clément Mallet
, Auteur
Editeur : Leibniz : Leibniz Institute of Ecological Urban and Regional Development Année de publication : 2019 Conférence : ILUS 2019 International land use symposium 04/12/2019 06/12/2019 Paris France programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par réseau neuronal
[Termes IGN] cohérence des données
[Termes IGN] détection d'événement
[Termes IGN] détection de changement
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mâcon
[Termes IGN] prairie
[Termes IGN] puits de carboneRésumé : (auteur) Throughout Europe, grasslands are a major component of the landscape comprising 40% of agricultural land. Permanent Grassland (PM) means land used to grow herbaceous forage crops naturally (self-seeded) or through cultivation (sown) and that has not been included in the crop rotation of the holding for five years or more. PM are major ecosystems associated with high biodiversity which provide a wide range of ecosystem services (e.g. carbon sequestration, water quality, flood and erosion control). Grasslands have an important carbon storage capacity which is valuable for climate protection. Different studies have demonstrated that grassland managements such as grazing or mowing can cause significant effects on carbon storage in soils. Identifying and mapping grassland management practices over time can thus have important impact on climate studies. Remote sensing allows a synoptic and regular monitoring through systematic acquisitions of Earth Observation imagery. The emergence of free and easily Sentinel's satellite data provided by the European Copernicus program, offers new possibilities for grassland monitoring. Sentinel-1 (51) and Sentinel-2 (52) missions acquire radar and optical satellite image time series at high temporal resolution and fine spatial resolution. They fully match the requirements both for yearly and real-time monitoring. In this work, we target to jointly exploit both data sources to dynamically detect mowing events (MowEve) on permanent grasslands. Thematic related analysis of the datasets will highlight strengths and weaknesses of both optical and radar imagery. (i) 52 appears efficient for MowEve detection, with significant variations in the vegetation status that can be easily detected in the spectral signal extracted from the time series of images. But the temporal revisit of 52 although nominally 5 days is often reduced even by half due to the frequent cloud cover (ii) SAR images acquisitions being independent of illumination conditions or cloud cover allows for systematic acquisitions and revisit rate of 6 days. Data consistency makes S1 data essential during fast phenomena such as MowEve. Yet, radar data appears very sensitive to soil moisture, precipitations and geometrical properties making interpretation of their time series more challenging. MowEve detection being weakly supervised, the proposed methodology relies on applying traditional change detection strategies on a low-level fused 51 and S2 data representation. Recurrent Neural Networks will be trained to derive yearly or real-time synthetic 52 vegetation indices from both 52 and S1 observations. Furthermore, through attention mechanisms, our proposed RNN architecture will be able to take into account external data (climate, clouds, topography, etc.) so as to dynamically weight at parcel-level the contribution of optical and radar images. Such method will contribute to obtain dense temporal optical profiles without missing data and compatible with MowEve detection. An experimental evaluation will be carried out on a test site covering an area of 110x110 Km in France (Macon region). Object-oriented analysis will be presented based on permanent grasslands derived from the Land Parcel Identification System. The proposed approach will be compared with traditional MowEve methods essentially based on thresholding independently the different modalities. Numéro de notice : C2019-067 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97022 Effect of training class label noise on classification performances for land cover mapping with satellite image time series / Charlotte Pelletier in Remote sensing, vol 9 n° 2 (February 2017)
PermalinkCartographie de l'occupation des sols à partir de séries temporelles d'images satellitaires à hautes résolutions : identification et traitement des données mal étiquetées / Charlotte Pelletier (2017)
PermalinkPermalinkNew iterative learning strategy to improve classification systems by using outlier detection techniques / Charlotte Pelletier (2017)
PermalinkAssessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas / Charlotte Pelletier in Remote sensing of environment, vol 187 (15 December 2016)
PermalinkAn assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series / Charlotte Pelletier (2016)
PermalinkSegmentation hyperspectrale de forêts tropicales par arbres de partition binaires / Guillaume Tochon in Revue Française de Photogrammétrie et de Télédétection, n° 202 (Avril 2013)
Permalink