Détail de l'auteur
Auteur Behnaz Bigdeli |
Documents disponibles écrits par cet auteur (2)



Generation of digital terrain model for forest areas using a new particle swarm optimization on LiDAR data / Behnaz Bigdeli in Survey review, vol 52 n° 371 (March 2020)
![]()
[article]
Titre : Generation of digital terrain model for forest areas using a new particle swarm optimization on LiDAR data Type de document : Article/Communication Auteurs : Behnaz Bigdeli, Auteur ; Masoomeh Gomroki, Auteur ; Parham Pahlavani, Auteur Année de publication : 2020 Article en page(s) : pp 115 - 125 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] erreur moyenne quadratique
[Termes IGN] filtrage de la végétation
[Termes IGN] interpolation polynomiale
[Termes IGN] Iran
[Termes IGN] modèle numérique de terrain
[Termes IGN] optimisation par essaim de particules
[Termes IGN] semis de points
[Termes IGN] surface forestièreRésumé : (auteur) Since Light Detection and Ranging (LiDAR) data are capable of distinguishing vegetation from bare earth, these data are used nowadays to produce digital terrain models (DTMs) for forest regions. In this research, raw LiDAR data were filtered using hybrid and slope-based filtering methods and the filtered data were then interpolated using the new modified particle swarm optimisation (PSO) and accordingly the results were compared with those achieved by the other intelligent and conventional interpolation methods. The new modified PSO optimized the polynomial degree for interpolation and found suitable parameters for optimisation. Two data sets from two forest regions in some northern regions of Iran located in Golestan province were selected to compare these methods. Region 1 with dense vegetation and region 2 with grass vegetation. The results indicated that the hybrid filter performed lower RMSE than the slope-based filter. Finally, the DTM with lowest RMSE was obtained using the hybrid filter and the modified PSO interpolation method with RMSE of 6 mm for region 1 (Tavar-kuh) and 61 mm for region 2 (Shastkola River Basin). Numéro de notice : A2020-078 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1530331 Date de publication en ligne : 10/10/2018 En ligne : https://doi.org/10.1080/00396265.2018.1530331 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94640
in Survey review > vol 52 n° 371 (March 2020) . - pp 115 - 125[article]Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery / Behnaz Bigdeli in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 6 (June 2013)
![]()
[article]
Titre : Band grouping versus band clustering in SVM ensemble classification of hyperspectral imagery Type de document : Article/Communication Auteurs : Behnaz Bigdeli, Auteur ; Farhad Samadzadegan, Auteur ; Peter Reinartz, Auteur Année de publication : 2013 Article en page(s) : pp 523 - 533 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] regroupement de donnéesRésumé : (Auteur) Due to the dense sampling of spectral signatures of land covers, hyperspectral images have a better discrimination among similar ground cover classes than traditional remote sensing data. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral image classification. In addition, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon. Consequently, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifiers in these situations, classifier ensemble system may exhibit better performance. This paper presents a method for classification of hyperspectral data based on two concepts of Band Clustering (BC) and Band Grouping [eg] through a Support Vector machine (SVM) ensemble system. The proposed method uses the BC\BG strategies to split data into few band portions. After this step, we applied SVM on each band cluster\group that is produced in previous step. Finally, Naive Bayes as a classifier fusion method combines the decisions of SVM classifiers. Experimental results show that the proposed method improves the classification accuracy in comparison to the standard SVM and to feature selection methods. Numéro de notice : A2013-362 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.6.523 En ligne : https://doi.org/10.14358/PERS.79.6.523 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32500
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 6 (June 2013) . - pp 523 - 533[article]