Détail de l'auteur
Auteur Jun Li |
Documents disponibles écrits par cet auteur (14)



The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
![]()
[article]
Titre : The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas Type de document : Article/Communication Auteurs : Jun Li, Auteur ; Tianyu Guo, Auteur ; Chengye Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 665 - 671 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas, six types of data were used as driving factors and three methods —multi-linear regression (MLR), geographically weighted regression (GWR), and geographically weighted artificial neural network (GWANN)— were adopted in the modeling. The experiments, conducted in Shengli mining areas located in Xilinhot city, China, show that the MLR model without consideration of spatial heterogeneity and spatial non-stationarity performs the worst and that the GWR model presents obvious location differences, since it predefines a linear relationship which is unable to describe FVC for some locations. The GWANN model, improving on these defects, is the most suitable model for the FVC driving process in mining areas; it outperforms the other two models, with root-mean-square error (RMSE) and mean absolute percentage error (MAPE) reaching 0.16 and 0.20. It has improvements of approximately 24% in RMSE and 33% in MAPE compared to the MLR model, and those values grow to 59% and 71% when compared with the GWR model. Numéro de notice : A2022-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00070R3 Date de publication en ligne : 01/10/2022 En ligne : https://doi.org/10.14358/PERS.21-00070R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101973
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 10 (October 2022) . - pp 665 - 671[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022101 SL Revue Centre de documentation Revues en salle Disponible Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation Type de document : Article/Communication Auteurs : Boxi Shen, Auteur ; Xiang Xu, Auteur ; Jun Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 683 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] appariement de cartes
[Termes IGN] estimation par noyau
[Termes IGN] mobilité urbaine
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle conceptuel de flux
[Termes IGN] Shenzhen
[Termes IGN] taxi
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] trajet (mobilité)Résumé : (auteur) Taxi mobility data plays an important role in understanding urban mobility in the context of urban traffic. Specifically, the taxi is an important part of urban transportation, and taxi trips reflect human behaviors and mobility patterns, allowing us to identify the spatial variety of such patterns. Although taxi trips are generated in the form of network flows, previous works have rarely considered network flow patterns in the analysis of taxi mobility data; Instead, most works focused on point patterns or trip patterns, which may provide an incomplete snapshot. In this work, we propose a novel approach to explore the spatial-temporal patterns of taxi travel by considering point, trip and network flow patterns in a simultaneous fashion. Within this approach, an improved network kernel density estimation (imNKDE) method is first developed to estimate the density of taxi trip pick-up and drop-off points (ODs). Next, the correlation between taxi service activities (i.e., ODs) and land-use is examined. Then, the trip patterns of taxi trips and its corresponding routes are analyzed to reveal the correlation between trips and road structure. Finally, network flow analysis for taxi trip among areas of varying land-use types at different times are performed to discover spatial and temporal taxi trip ODs from a new perspective. A case study in the city of Shenzhen, China, is thoroughly presented and discussed for illustrative purposes. Numéro de notice : A2020-730 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110683 Date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110683 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96337
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 683[article]Urban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
![]()
[article]
Titre : Urban impervious surface estimation from remote sensing and social data Type de document : Article/Communication Auteurs : Yan Yu, Auteur ; Jun Li, Auteur ; Changyu Zhu, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2018 Article en page(s) : pp 771 - 780 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] base de données routières
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] données vectorielles
[Termes IGN] Google Maps
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] régression multiple
[Termes IGN] réseau routier
[Termes IGN] surface imperméable
[Termes IGN] zone urbaineRésumé : (auteur) We propose an inspiring approach for accurate impervious surface estimation based on the integration of remote sensing and social data. The proposed approach exploits the strengths of two kind of heterogeneous features, i.e., physical features and social features, where the former ones are derived by a morphological attribute profiles-guided spectral mixture analysis model using remote sensing imagery, and the latter ones are obtained from the normalized kernel density of point of interest and vector road datasets. These two features are then integrated using a multivariable linear regression model to estimate impervious surfaces. The proposed method has been tested in the main urban area of Guangzhou, China, in pixel level and parcel level, respectively. The obtained results, with the overall RMSE of 10.98% and 10.90% for pixel level and parcel level, respectively, demonstrate the good performance of integrating remote sensing imagery and social data for mapping of urban impervious surface. Numéro de notice : A2018-549 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.12.771 Date de publication en ligne : 01/12/2018 En ligne : https://doi.org/10.14358/PERS.84.12.771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91622
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 12 (December 2018) . - pp 771 - 780[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018121 RAB Revue Centre de documentation En réserve 3L Disponible Robust minimum volume simplex analysis for hyperspectral unmixing / Shaoquan Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
![]()
[article]
Titre : Robust minimum volume simplex analysis for hyperspectral unmixing Type de document : Article/Communication Auteurs : Shaoquan Zhang, Auteur ; Alexander Agathos, Auteur ; Jun Li, Auteur Année de publication : 2017 Article en page(s) : pp 6431 - 6439 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du simplexe
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robusteRésumé : (Auteur) Most blind hyperspectral unmixing methods exploit convex geometry properties of hyperspectral data. The minimum volume simplex analysis (MVSA) is one of such methods, which, as many others, estimates the minimum volume (MV) simplex where the measured vectors live. MVSA was conceived to circumvent the matrix factorization step often implemented by MV-based algorithms and also to cope with outliers, which compromise the results produced by MV algorithms. Inspired by the recently proposed robust MV enclosing simplex (RMVES) algorithm, we herein introduce the robust MVSA (RMVSA), which is a version of MVSA robust to noise. As in RMVES, the robustness is achieved by employing chance constraints, which control the volume of the resulting simplex. RMVSA differs, however, substantially from RMVES in the way optimization is carried out. In this paper, we develop a linearization relaxation of the nonlinear chance constraints, which can greatly lighten the computational complex of chance constraint problems. The effectiveness of RMVSA is illustrated by comparing its performance with the state of the art. Numéro de notice : A2017-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2728104 En ligne : https://doi.org/10.1109/TGRS.2017.2728104 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88784
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6431 - 6439[article]Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification / Lin He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
![]()
[article]
Titre : Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification Type de document : Article/Communication Auteurs : Lin He, Auteur ; Jun Li, Auteur ; Antonio J. Plaza, Auteur ; Yuanqing Li, Auteur Année de publication : 2017 Article en page(s) : pp 1381 - 1395 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] filtre de Gabor
[Termes IGN] filtre passe-bas
[Termes IGN] image hyperspectrale
[Termes IGN] performanceRésumé : (Auteur) Spectral-spatial classification of remotely sensed hyperspectral images has attracted a lot of attention in recent years. Although Gabor filtering has been used for feature extraction from hyperspectral images, its capacity to extract relevant information from both the spectral and the spatial domains of the image has not been fully explored yet. In this paper, we present a new discriminative low-rank Gabor filtering (DLRGF) method for spectral-spatial hyperspectral image classification. A main innovation of the proposed approach is that our implementation is accomplished by decomposing the standard 3-D spectral-spatial Gabor filter into eight subfilters, which correspond to different combinations of low-pass and bandpass single-rank filters. Then, we show that only one of the subfilters (i.e., the one that performs low-pass spatial filtering and bandpass spectral filtering) is actually appropriate to extract suitable features based on the characteristics of hyperspectral images. This allows us to perform spectral-spatial classification in a highly discriminative and computationally efficient way, by significantly decreasing the computational complexity (from cubic to linear order) compared with the 3-D spectral-spatial Gabor filter. In order to theoretically prove the discriminative ability of the selected subfilter, we derive an overall classification risk bound to evaluate the discriminating abilities of the features provided by the different subfilters. Our experimental results, conducted using different hyperspectral images, indicate that the proposed DLRGF method exhibits significant improvements in terms of classification accuracy and computational performance when compared with the 3-D spectral-spatial Gabor filter and other state-of-the-art spectral-spatial classification methods. Numéro de notice : A2017-154 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623742 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623742 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84689
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1381 - 1395[article]Fast three-dimensional empirical mode decomposition of hyperspectral images for class-oriented multitask learning / Zhi He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
PermalinkA probabilistic approach to detect mixed periodic patterns from moving object data / Jun Li in Geoinformatica, vol 20 n° 4 (October - December 2016)
PermalinkRobust collaborative nonnegative matrix factorization for hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
PermalinkMultiple morphological component analysis based decomposition for remote sensing image classification / Xiang Xu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
PermalinkMinimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
PermalinkComplementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
PermalinkMining trajectory data and geotagged data in social media for road map inference: Mining social media for road map inference / Jun Li in Transactions in GIS, vol 19 n° 1 (February 2015)
PermalinkSpectral–spatial classification of hyperspectral data via morphological component analysis-based image separation / Zhaohui Xue in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
PermalinkSemisupervised self-learning for hyperspectral image classification / Immaculada Dopido in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
Permalink