Détail de l'auteur
Auteur Fan Wang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Artificial intelligence oceanography Type de document : Monographie Auteurs : Xiaofeng Li, Éditeur scientifique ; Fan Wang, Éditeur scientifique Editeur : Springer Nature Année de publication : 2023 Importance : 346 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-981-19637-5-9 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cyclone
[Termes IGN] détection d'objet
[Termes IGN] iceberg
[Termes IGN] intelligence artificielle
[Termes IGN] océanographie
[Termes IGN] température de surface de la merRésumé : (éditeur) This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing. Note de contenu : 1- Artificial Intelligence Foundation of smart ocean
2- Forecasting tropical instability waves based on artificial intelligence
3- Sea surface height anomaly prediction based on artificial intelligence
4- Satellite data-driven internal solitary wave forecast based on machine learning techniques
5- AI-based subsurface thermohaline structure retrieval from remote sensing observations
6- Ocean heat content retrieval from remote sensing data based on machine learning
7- Detecting tropical cyclogenesis using broad learning system from satellite passive microwave observations
8- Tropical cyclone monitoring based on geostationary satellite imagery
9- Reconstruction of pCO2 data in the Southern ocean based on feedforward neural network
10- Detection and analysis of mesoscale eddies based on deep learning
11- Deep convolutional neural networks-based coastal inundation mapping from SAR imagery: with one application case for Bangladesh, a UN-defined least developed country
12- Sea ice detection from SAR images based on deep fully convolutional networks
13- Detection and analysis of marine green algae based on artificial intelligence
14- Automatic waterline extraction of large-scale tidal flats from SAR images based on deep convolutional neural networks
15- Extracting ship’s size from SAR images by deep learning
16- Benthic organism detection, quantification and seamount biology detection based on deep learningNuméro de notice : 24105 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Monographie DOI : 10.1007/978-981-19-6375-9 En ligne : https://link.springer.com/book/10.1007/978-981-19-6375-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103058 New point matching algorithm using sparse representation of image patch feature for SAR image registration / Jianwei Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : New point matching algorithm using sparse representation of image patch feature for SAR image registration Type de document : Article/Communication Auteurs : Jianwei Fan, Auteur ; Yan Wu, Auteur ; Fan Wang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1498 - 1510 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] alignement
[Termes IGN] appariement de points
[Termes IGN] chatoiement
[Termes IGN] erreur de discrétisation
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (Auteur) Image registration is an important preprocessing step in many synthetic aperture radar (SAR) image applications. A key issue in image registration is to reliably establish the correspondences between the feature points extracted from the reference and sensed images. A new point matching algorithm is proposed in this paper to align two SAR images. In the proposed method, by considering image patches as the basic units, a novel local descriptor including the intensity and geometric information is assigned to each feature point, which is more robust to speckle noise. Furthermore, a correspondence establishment scheme is introduced based on the reconstruction errors between feature points calculated by the sparse representation (SR) technique, which is designed for achieving accurate matches. Based on the obtained SR coefficients, a coordinate correction procedure is further proposed for improving the localization accuracy of the obtained correspondences. Both simulated deformed and real SAR images are utilized to evaluate the performance. The experimental results indicate that the proposed method yields a better registration performance in terms of both accuracy and robustness. Numéro de notice : A2017-156 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2626373 En ligne : https://doi.org/10.1109/TGRS.2016.2626373 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84692
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1498 - 1510[article]Deblurring and sparse unmixing for hyperspectral images / Xi-Le Zhao in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
[article]
Titre : Deblurring and sparse unmixing for hyperspectral images Type de document : Article/Communication Auteurs : Xi-Le Zhao, Auteur ; Fan Wang, Auteur ; Ting-Zhu Huang, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 4045 - 4058 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] correction d'image
[Termes IGN] flou
[Termes IGN] image hyperspectraleRésumé : (Auteur) The main aim of this paper is to study total variation (TV) regularization in deblurring and sparse unmixing of hyperspectral images. In the model, we also incorporate blurring operators for dealing with blurring effects, particularly blurring operators for hyperspectral imaging whose point spread functions are generally system dependent and formed from axial optical aberrations in the acquisition system. An alternating direction method is developed to solve the resulting optimization problem efficiently. According to the structure of the TV regularization and sparse unmixing in the model, the convergence of the alternating direction method can be guaranteed. Experimental results are reported to demonstrate the effectiveness of the TV and sparsity model and the efficiency of the proposed numerical scheme, and the method is compared to the recent Sparse Unmixing via variable Splitting Augmented Lagrangian and TV method by Iordache et al. Numéro de notice : A2013-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2227764 En ligne : https://doi.org/10.1109/TGRS.2012.2227764 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32513
in IEEE Transactions on geoscience and remote sensing > vol 51 n° 7 Tome 1 (July 2013) . - pp 4045 - 4058[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2013071A RAB Revue Centre de documentation En réserve L003 Disponible