Détail de l'auteur
Auteur Zhen Dong |
Documents disponibles écrits par cet auteur



Background tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Background tropospheric delay in geosynchronous synthetic aperture radar Type de document : Article/Communication Auteurs : Dexin Li, Auteur ; Xiaoxiang Zhu, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] compensation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] modèle géométrique de prise de vue
[Termes descripteurs IGN] propagation troposphérique
[Termes descripteurs IGN] radar bistatique
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] synchronisationRésumé : (auteur) Spaceborne synthetic aperture radar (SAR) has been treated as a weather independent system for a long time. However, with the development of advanced SAR configurations, e.g., high resolution, bistatic, geosynchronous (GEO), the influence of tropospheric propagation error, which strongly depends on the weather, has begun to receive attention. In this paper, we focus on the effect of deterministic background tropospheric delay (BTD) during the image formation of GEO SAR. First, the decorrelation problems caused by the spatial variation and BTD are presented. Second, by combining with the SAR imaging geometry, the BTD error is decomposed as constant error, spatially variant error, and time variant error, the influences of which are analyzed under different circumstances. Third, an imaging method starting from the meteorological parameters and the GEO SAR systematic parameters is proposed to deal with the decorrelation problems. Finally, simulations with the dot-matrix targets are performed to validate the imaging method. Numéro de notice : A2020-632 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183081 date de publication en ligne : 20/09/2020 En ligne : https://doi.org/10.3390/rs12183081 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96053
in Remote sensing > vol 12 n° 18 (September 2020) . - 21 p.[article]Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
![]()
[article]
Titre : Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Bisheng Yang, Auteur ; Xinlian Liang, Auteur ; Zhen Dong, Auteur ; Ronggang Huang, Auteur ; Yunsheng Wang, Auteur ; Wuyan Li, Auteur Année de publication : 2019 Article en page(s) : pp 94 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme ICP
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] image ADAR
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] surveillance forestièreRésumé : (Auteur) Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) systems are effective ways to capture the 3D information of forests from complementary perspectives. Registration of the two sources of point clouds is necessary for various forestry applications. Since the forest point clouds show irregular and natural point distributions, standard registration methods working on geometric keypoints (e.g., points, lines, and planes) are likely to fail. Hence, we propose a novel method to register the ALS and TLS forest point clouds through density analysis of the crowns. The proposed method extracts mode-based keypoints by the mean shift method and aligns them by maximum likelihood estimation. Firstly, the differences in the point densities of the ALS and TLS crowns are minimized to produce analogous modes, which represent the local maxima of the underlying probability density function (PDF). The mode-based keypoints are then aligned through the coherent point drift (CPD) algorithm, which is independent of the descriptor similarities and considers the alignment as a maximum likelihood estimation problem. The sets of keypoints derived from the two data sources need not be equal. Finally, the recovered transformation is applied to the original point clouds and refined through the standard iterative closest point (ICP) algorithm. In contrast to some of the existing methods, the proposed method avoids the geometric description of the forest point clouds. Furthermore, additional information such as tree diameter or height is not required to evaluate the similarities. The experiments in this study were conducted in a Scandinavian boreal forest, located in Evo, Finland. The proposed method was tested on four datasets (ALS data: a circle with a diameter of 60 m, multi-scan TLS data: 32 × 32 m) with heterogeneous tree species and structures. The results showed that the proposed probabilistic-based method obtains a good performance with a 3D distance residual of 0.069 m, and improved the accuracy of the registration when compared with the existing methods. Numéro de notice : A2019-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : doi.org/10.1016/j.isprsjprs.2019.08.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.008 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93356
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 94 - 107[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019103 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
![]()
[article]
Titre : A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Yang Bisheng, Auteur ; Zhen Dong, Auteur ; Ahmed Shaker, Auteur Année de publication : 2018 Article en page(s) : pp 400 - 411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] Ontario (Canada)
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Characterization of individual trees is essential for many applications in forest management and ecology. Previous studies relied on single tree detection from monochromatic wavelength airborne laser scanning (ALS) systems and they focused on the use of the geometric spatial information of the point clouds (i.e., X, Y, and Z coordinates). However, there is quite often a difficulty dealing with clumped trees when only the geometric spatial information is considered. The emergence of multispectral LiDAR sensors provides a new solution for individual tree structure acquisition. The aim of this paper is to investigate the performance of multispectral ALS data for delineating individual trees which are challenging by using the monochromatic wavelength ALS system. The proposed workflow utilizes the mean shift segmentation method on different feature spaces for crown isolation. In addition, both spatial domain and multispectral domain are used to refine the under-segmentation crown segments. Ten plots (2 sets of different structural complexity) located in the dense coniferous forest area in Tobermory, Ontario, Canada are selected as experiment data. Results show that the developed method correctly detects 88% and 82% of the dominant trees with and without multispectral information, respectively. Compared with segmentation using geometric spatial information solely, the main improvements are achieved for clumped tree segment with the distinguished multispectral features. This study demonstrates that multispectral airborne laser scanning data is more capable for individual tree delineation than monochromatic wavelength laser scanning data in dealing with forests with clumped crowns in dense forests. Numéro de notice : A2018-404 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.08.010 date de publication en ligne : 17/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.08.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90862
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 400 - 411[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018103 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 3D local feature BKD to extract road information from mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
![]()
[article]
Titre : 3D local feature BKD to extract road information from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yang Bisheng, Auteur ; Yuan Liu, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 329 - 343 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] classificateur
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémétrie laser mobile
[Termes descripteurs IGN] variable binaireRésumé : (Auteur) Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise. Numéro de notice : A2017-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.06.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.06.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86479
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 329 - 343[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017083 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt An automated method to register airborne and terrestrial laser scanning point clouds / Bisheng Yang in ISPRS Journal of photogrammetry and remote sensing, vol 109 (November 2015)
![]()
[article]
Titre : An automated method to register airborne and terrestrial laser scanning point clouds Type de document : Article/Communication Auteurs : Bisheng Yang, Auteur ; Yufu Zang, Auteur ; Zhen Dong, Auteur ; Ronggang Huang, Auteur Année de publication : 2015 Article en page(s) : pp 62 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] appariement de lignes
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] enregistrement de données
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] modèle topologique de données
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] télémétrie laser mobileRésumé : (auteur) Laser scanning techniques have been widely used to capture three-dimensional (3D) point clouds of various scenes (e.g. urban scenes). In particular, airborne laser scanning (ALS) and mobile laser scanning (MLS), terrestrial laser scanning (TLS) are effective to capture point clouds from top or side view. Registering the complimentary point clouds captured by ALS and MLS/TLS provides an aligned data source for many purposes (e.g. 3D reconstruction). Among these MLS can be directly geo-referenced to ALS according to the equipped position systems. For small scanning areas or dense building areas, TLS is used instead of MLS. However, registering ALS and TLS datasets suffers from poor automation and robustness because of few overlapping areas and sparse corresponding geometric features. A robust method for the registration of TLS and ALS datasets is proposed, which has four key steps. (1) extracts building outlines from TLS and ALS data sets independently; (2) obtains the potential matching pairs of outlines according to the geometric constraints between building outlines; (3) constructs the Laplacian matrices of the extracted building outlines to model the topology between the geometric features; (4) calculates the correlation coefficients of the extracted geometric features by decomposing the Laplacian matrices into the spectral space, providing correspondences between the extracted features for coarse registration. Finally, the multi-line adjustment strategy is employed for the fine registration. The robustness and accuracy of the proposed method are verified using field data, demonstrating a reliable and stable solution to accurately register ALS and TLS datasets. Numéro de notice : A2015-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2015.08.006 Format de la ressource électronique : YRL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79237
in ISPRS Journal of photogrammetry and remote sensing > vol 109 (November 2015) . - pp 62 - 76[article]Hierarchical extraction of urban objects from mobile laser scanning data / Bisheng Yang in ISPRS Journal of photogrammetry and remote sensing, vol 99 (January 2015)
PermalinkA shape-based segmentation method for mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)
Permalink