Détail de l'auteur
Auteur Xin Huang |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
[article]
Titre : A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Xin Huang, Auteur ; Yujin Feng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5600812 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] carte de profondeur
[Termes IGN] déformation d'objet
[Termes IGN] effet de profondeur cinétique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconstruction d'image
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( https://irsip.whu.edu.cn/resources/resources_en_v2.php ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark. Numéro de notice : A2023-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234694 En ligne : https://doi.org/10.1109/TGRS.2023.3234694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102488
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5600812[article]Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China / Xin Huang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
[article]
Titre : Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China Type de document : Article/Communication Auteurs : Xin Huang, Auteur ; Ying Wang, Auteur Année de publication : 2019 Article en page(s) : pp 119 - 131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre urbain
[Termes IGN] Chine
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TIRS
[Termes IGN] image ZiYuan-3
[Termes IGN] morphologie urbaine
[Termes IGN] régression multiple
[Termes IGN] température au sol
[Termes IGN] Wuhan (Chine)Résumé : (Auteur) The Urban heat island (UHI) effect is an increasingly serious problem in urban areas. Information on the driving forces of intra-urban temperature variation is crucial for ameliorating the urban thermal environment. Although prior studies have suggested that urban morphology (e.g., landscape pattern, land-use type) can significantly affect land surface temperature (LST), few studies have explored the comprehensive effect of 2D and 3D urban morphology on LST in different urban functional zones (UFZs), especially at a fine scale. Therefore, in this research, we investigated the relationship between 2D/3D urban morphology and summer daytime LST in Wuhan, a representative megacity in Central China, which is known for its extremely hot weather in summer, by adopting high-resolution remote sensing data and geographical information data. The “urban morphology” in this study consists of 2D urban morphological parameters, 3D urban morphological parameters, and UFZs. Our results show that: (1) The LST is significantly related to 2D and 3D urban morphological parameters, and the scattered distribution of buildings with high rise can facilitate the mitigation of LST. Although sky view factor (SVF) is an important measure of 3D urban geometry, its influence on LST is complicated and context-dependent. (2) Trees are the most influential factor in reducing LST, and the cooling efficiency mainly depends on their proportions. The fragmented and irregular distribution of grass/shrubs also plays a significant role in alleviating LST. (3) With respect to UFZs, the residential zone is the largest heat source, whereas the highest LST appears in commercial and industrial zones. (4) Results of the multivariate regression and variation partitioning indicate that the relative importance of 2D and 3D urban morphological parameters on LST varies among different UFZs and 2D morphology outperforms 3D morphology in LST modulation. The results are generally consistent in spring, summer and autumn. These findings can provide insights for urban planners and designers on how to mitigate the surface UHI (SUHI) effect via rational landscape design and urban management during summer daytime. Numéro de notice : A2019-456 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.010 Date de publication en ligne : 22/04/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92869
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 119 - 131[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Large-scale remote sensing image retrieval by deep hashing neural networks / Yansheng Li in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Large-scale remote sensing image retrieval by deep hashing neural networks Type de document : Article/Communication Auteurs : Yansheng Li, Auteur ; Yongjun Zhang, Auteur ; Xin Huang, Auteur ; Hu Zhu, Auteur ; Jiayi Ma, Auteur Année de publication : 2018 Article en page(s) : pp 950 - 965 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] données d'entrainement (apprentissage automatique)Résumé : (Auteur) As one of the most challenging tasks of remote sensing big data mining, large-scale remote sensing image retrieval has attracted increasing attention from researchers. Existing large-scale remote sensing image retrieval approaches are generally implemented by using hashing learning methods, which take handcrafted features as inputs and map the high-dimensional feature vector to the low-dimensional binary feature vector to reduce feature-searching complexity levels. As a means of applying the merits of deep learning, this paper proposes a novel large-scale remote sensing image retrieval approach based on deep hashing neural networks (DHNNs). More specifically, DHNNs are composed of deep feature learning neural networks and hashing learning neural networks and can be optimized in an end-to-end manner. Rather than requiring to dedicate expertise and effort to the design of feature descriptors, we can automatically learn good feature extraction operations and feature hashing mapping under the supervision of labeled samples. To broaden the application field, DHNNs are evaluated under two representative remote sensing cases: scarce and sufficient labeled samples. To make up for a lack of labeled samples, DHNNs can be trained via transfer learning for the former case. For the latter case, DHNNs can be trained via supervised learning from scratch with the aid of a vast number of labeled samples. Extensive experiments on one public remote sensing image data set with a limited number of labeled samples and on another public data set with plenty of labeled samples show that the proposed remote sensing image retrieval approach based on DHNNs can remarkably outperform state-of-the-art methods under both of the examined conditions. Numéro de notice : A2018-192 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2756911 Date de publication en ligne : 13/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2756911 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89857
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 950 - 965[article]Multiple morphological component analysis based decomposition for remote sensing image classification / Xiang Xu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
[article]
Titre : Multiple morphological component analysis based decomposition for remote sensing image classification Type de document : Article/Communication Auteurs : Xiang Xu, Auteur ; Jun Li, Auteur ; Xin Huang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 3083 - 3102 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image multi sources
[Termes IGN] morphologie mathématiqueRésumé : (Auteur) Remote sensing images exhibit significant contrast and intensity regions and edges, which makes them highly suitable for using different texture features to properly represent and classify the objects that they contain. In this paper, we present a new technique based on multiple morphological component analysis (MMCA) that exploits multiple textural features for decomposition of remote sensing images. The proposed MMCA framework separates a given image into multiple pairs of morphological components (MCs) based on different textural features, with the ultimate goal of improving the signal-to-noise level and the data separability. A distinguishing feature of our proposed approach is the possibility to retrieve detailed image texture information, rather than using a single spatial characteristic of the texture. In this paper, four textural features: content, coarseness, contrast, and directionality (including horizontal and vertical), are considered for generating the MCs. In order to evaluate the obtained MCs, we conduct classification by using both remotely sensed hyperspectral and polarimetric synthetic aperture radar (SAR) scenes, showing the capacity of the proposed method to deal with different kinds of remotely sensed images. The obtained results indicate that the proposed MMCA framework can lead to very good classification performances in different analysis scenarios with limited training samples. Numéro de notice : A2016-848 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2511197 En ligne : https://doi.org/10.1109/TGRS.2015.2511197 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82929
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 5 (May 2016) . - pp 3083 - 3102[article]Hyperspectral image noise reduction based on rank-1 tensor decomposition / Xian Guoa in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)
[article]
Titre : Hyperspectral image noise reduction based on rank-1 tensor decomposition Type de document : Article/Communication Auteurs : Xian Guoa, Auteur ; Xian Guo, Auteur ; Xin Huang, Auteur ; Liangpei Zhanga, Auteur ; Lefei Zhang, Auteur Année de publication : 2013 Article en page(s) : pp 50 - 63 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] calcul tensoriel
[Termes IGN] décomposition spatiale
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] tenseur
[Termes IGN] valeur propre
[Termes IGN] voxelRésumé : (Auteur) In this study, a novel noise reduction algorithm for hyperspectral imagery (HSI) is proposed based on high-order rank-1 tensor decomposition. The hyperspectral data cube is considered as a three-order tensor that is able to jointly treat both the spatial and spectral modes. Subsequently, the rank-1 tensor decomposition (R1TD) algorithm is applied to the tensor data, which takes into account both the spatial and spectral information of the hyperspectral data cube. A noise-reduced hyperspectral image is then obtained by combining the rank-1 tensors using an eigenvalue intensity sorting and reconstruction technique. Compared with the existing noise reduction methods such as the conventional channel-by-channel approaches and the recently developed multidimensional filter, the spatial–spectral adaptive total variation filter, experiments with both synthetic noisy data and real HSI data reveal that the proposed R1TD algorithm significantly improves the HSI data quality in terms of both visual inspection and image quality indices. The subsequent image classification results further validate the effectiveness of the proposed HSI noise reduction algorithm. Numéro de notice : A2013-488 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.06.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.06.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32626
in ISPRS Journal of photogrammetry and remote sensing > vol 83 (September 2013) . - pp 50 - 63[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013091 RAB Revue Centre de documentation En réserve L003 Disponible