Détail de l'auteur
Auteur Bahram Salehi |
Documents disponibles écrits par cet auteur (2)



Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]A combined object- and pixel-based image analysis framework for urban land cover classification of VHR imagery / Bahram Salehi in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 11 (November 2013)
![]()
[article]
Titre : A combined object- and pixel-based image analysis framework for urban land cover classification of VHR imagery Type de document : Article/Communication Auteurs : Bahram Salehi, Auteur ; Yun Zhang, Auteur ; Ming Zhong, Auteur Année de publication : 2013 Article en page(s) : pp 999 - 1014 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Ikonos
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] Nouveau-Brunswick (Canada)
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] transformation en ondelettesRésumé : (Auteur) This paper aims at exploiting the advantages of pixel-based and object-based image analysis approaches for urban land cover classification of very high resolution ( VHR ) satellite imagery through a combined object- and pixel-based image analysis framework. The framework starts with segmenting the image resulting in several spectral and spatial features of segments. To overcome the curse of dimensionality, a wavelet- based feature extraction method is proposed to reduce the number of features. The wavelet-based method is automatic, fast, and can preserve local variations in objects' spectral/ spatial signatures. Finally, the extracted features together with the original bands of the image are classified using the conventional pixel-based Maximum Likelihood classification. The proposed method was tested on the WorldView-2, QuickBird, and Ikonos images of the same urban area for comparison purposes. Results show up to 17 percent, 10 percent, and 11 percent improvement in kappa coefficients compared to the case in which only the original bands of the image are used for WV - 2 , QB , and IK , respectively. Furthermore, the objects' spectral features contribute more to increasing classification accuracy than spatial features. Numéro de notice : A2013-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.11.999 En ligne : https://doi.org/10.14358/PERS.79.11.999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32732
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 11 (November 2013) . - pp 999 - 1014[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2013111 RAB Revue Centre de documentation En réserve 3L Disponible 105-2013112 RAB Revue Centre de documentation En réserve 3L Disponible